资源描述:
《2019届高三数学(文)一轮复习课时跟踪训练第十章 概率 课时跟踪训练54含解析》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019届高三数学(文)一轮复习课时跟踪训练课时跟踪训练(五十四)[基础巩固]一、选择题1.在一次随机试验中,彼此互斥的事件A,B,C,D的概率分别是0.2,0.2,0.3,0.3,则下列说法正确的是( )A.A+B与C是互斥事件,也是对立事件B.B+C与D是互斥事件,也是对立事件C.A+C与B+D是互斥事件,但不是对立事件D.A与B+C+D是互斥事件,也是对立事件[解析] 由于A,B,C,D彼此互斥,且A+B+C+D是一个必然事件,其事件的关系可由如图所示的Venn图表示,由图可知,任何一个事件与其余3个事件的和事件必然是对立事件,任何两个事件的和事件与其余两个事件的
2、和事件也是对立事件.故选D.[答案] D2.现有语文、数学、英语、物理和化学共5本书,从中任取1本,取出的是理科书的概率为( )A.B.C.D.[解析] 记取到语文、数学、英语、物理、化学书分别为事件A、B、C、D、E,则A、B、C、D、E是彼此互斥的,取到理科书的概率为事件B、D、E的概率的并集.P(B∪D∪E)=P(B)+P(D)+P(E)=82019届高三数学(文)一轮复习课时跟踪训练++=.[答案] C3.在第3、6、16路公共汽车的一个停靠站(假定这个车站只能停靠一辆公共汽车),有一位乘客需在5分钟之内乘上公共汽车赶到厂里,他可乘3路或6路公共汽车到厂里,已知
3、3路车,6路车在5分钟之内到此车站的概率分别为0.20和0.60,则该乘客在5分钟内能乘上所需要的车的概率为( )A.0.20B.0.60C.0.80D.0.12[解析] 该乘客在5分钟内能乘上所需要的车的概率为0.20+0.60=0.80.[答案] C4.有一个容量为66的样本,数据的分组及各组的频数如下:[11.5,15.5)2;[15.5,19.5)4;[19.5,23.5)9;[23.5,27.5)18;[27.5,31.5)11;[31.5,35.5)12;[35.5,39.5)7;[39.5;43.5)3.根据样本的频率分布估计,数据在[31.5,43.5)
4、的概率约是( )A.B.C.D.[解析] 根据所给的数据的分组及各组的频数得到:数据在[31.5,43.5)范围的有[31.5,35.5)12;[35.5,39.5)7;[39.5,43.5)3,∴满足题意的数据有12+7+3=22(个),总的数据有66个,∴数据在[31.5,43.5)的频率为=,由频率估计概率得P=.[答案] B82019届高三数学(文)一轮复习课时跟踪训练5.(2017·广东深圳一模)袋中装有大小相同的四个球,四个球上分别标有数字“2”,“3”,“4”,“6”,现从中随机选取三个球,则所选的三个球上的数字能构成等差数列的概率是( )A.B.C.D
5、.[解析] 从四个球中随机选取三个球,基本事件总数n=4,所选取三个球上的数字能构成等差数列包含的基本事件有(2,3,4),(2,4,6)共2个.所以所求概率P==,故选B.[答案] B6.(2017·江西九江一模)掷一枚均匀的硬币4次,出现正面向上的次数不少于反面向上的次数的概率为( )A.B.C.D.[解析] 掷一枚均匀的硬币4次,基本事件总数n=24=16,出现正面向上的次数不少于反面向上的次数包含的基本事件为有2次正面向上,3次正面向上和4次正面向上,其个数为6+4+1=11,∴出现正面向上的次数不少于反面向上的概率P=.[答案] D二、填空题7.从某班学生中任
6、意找出一人,如果该同学的身高小于160cm的概率为0.2,该同学的身高在[160,175](单位:cm)内的概率为0.5,那么该同学的身高超过175cm的概率为__________.[解析] 因为必然事件发生的概率是1,所以该同学的身高超过175cm的概率为1-0.2-0.5=0.3.[答案] 0.382019届高三数学(文)一轮复习课时跟踪训练8.已知盒子中有散落的棋子15粒,其中6粒是黑子,9粒是白子,已知从中取出2粒都是黑子的概率是,从中取出2粒都是白子的概率是,现从中任意取出2粒恰好是同一色的概率是________.[解析] 从盒子中任意取出2粒恰好是同一色的概率
7、恰为取2粒白子的概率与取2粒黑子的概率的和,即为+=.[答案] 9.一只不透明的袋子中装有7个红球,3个绿球,从中无放回地任意抽取两次,每次只取一个,取得两个红球的概率为,取得两个绿球的概率为,则取得两个同颜色的球的概率为________;至少取得一个红球的概率为________.[解析] 由于“取得两个红球”与“取得两个绿球”是互斥事件,因而取得两个同色球的概率为P=+=.由于事件A“至少取得一个红球”与事件B“取得两个绿球”是对立事件.故至少取得一个红球的概率P(A)=1-P(B)=.[答案] 三、解答题10.国家射击队