高等数学基础模拟题答案

高等数学基础模拟题答案

ID:13607546

大小:918.50 KB

页数:18页

时间:2018-07-23

高等数学基础模拟题答案_第1页
高等数学基础模拟题答案_第2页
高等数学基础模拟题答案_第3页
高等数学基础模拟题答案_第4页
高等数学基础模拟题答案_第5页
资源描述:

《高等数学基础模拟题答案》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、高等数学基础模拟题一、单项选择题(每小题3分,本题共15分) 1.设函数的定义域为,则函数的图形关于(D)对称.  (A)        (B)轴  (C)轴         (D)坐标原点 2.当时,变量(C)是无穷小量.  (A)           (B)  (C)         (D) 3.设,则(B).  (A)  (B)  (C)    (D) 4.( A).  (A)  (B)  (C)  (D) 5.下列无穷限积分收敛的是(B ).  (A)       (B)  (C)       (D)二、填空题(每小题3分,共15分) 1.函数的定义域是 (1,2)U(2,3]

2、    . 2.函数的间断点是  X=0   . 3.曲线在处的切线斜率是1/2. 4.函数的单调减少区间是 (-∞,-1)  . 5. sinx+c    .三、计算题(每小题9分,共54分) 1.计算极限.18 2.设,求. 3.设,求. 4.设是由方程确定的函数,求. 5.计算不定积分. 6.计算定积分.四、应用题(本题12分) 圆柱体上底的中心到下底的边沿的距离为l,问当底半径与高分别为多少时,圆柱体的体积最大?五、证明题(本题4分)  当时,证明不等式.18高等数学基础模拟题答案  一、单项选择题(每小题3分,本题共15分)  1.D 2.C 3.B 4.A 5.B  二、填

3、空题(每小题3分,本题共15分)  1. 2. 3. 4. 5.  三、计算题(每小题6分,共54分) 1.解: 2.解:由导数四则运算法则得     3.解: 4.解:等式两端求微分得     左端            右端由此得     整理后得      5.解:由分部积分法得      6.解:由换元积分法得18  四、应用题(本题12分)  解:如图所示,圆柱体高与底半径满足l圆柱体的体积公式为将代入得求导得令得,并由此解出.即当底半径,高时,圆柱体的体积最大.  五、证明题(本题4分)  证明:设,则有当时,,故单调增加,所以当时有,即不等式成立,证毕.18高等数学基础练

4、习题一、单项选择题:(每小题3分,共15分)1.设函数f(x)的定义域为,则函数f(x)的图形关于()对称。(A)(B)轴(C)轴(D)坐标原点2..当x→0时,下列变量中是无穷小量的是()。(A)(B)(C)(D)3.设,则()。(A)(B)(C)(D)4.()。(A)(B)(C)(D)5.下列无穷积分收敛的是()。(A)(B)(C)(D)二、填空题:(每空3分,共15分)1.函数y=的定义域是______________。2.函数的间断点是______________。3.曲线在点处的切线斜率是______________。4.函数的单调减少区间是______________。5.

5、______________。三、计算题:(每小题9分,共54分)1.计算极限:182.设3.设4.设隐函数y=f(x)由方程确定,求5.计算不定积分:6.计算定积分:四、应用题:(本题12分)圆柱体上底的中心到下底的边沿的距离为,问当底半径与高分别为多少时,圆柱体的体积最大?五、证明题(本题4分)当x>0时,证明不等式18高等数学基础样题一、单项选择题(每小题3分,本题共15分) 1.函数的图形关于( )对称.  (A)坐标原点       (B)轴  (C)轴         (D) 2.在下列指定的变化过程中,()是无穷小量.  (A)   (B)  (C)   (D) 3.下列

6、等式中正确的是( ).  (A)  (B)  (C)    (D) 4.若,则( ).  (A)  (B)  (C) (D) 5.下列无穷限积分收敛的是( ).  (A)       (B)  (C)       (D)二、填空题(每小题3分,共15分) 1.函数的定义域是     . 2.若函数,在处连续,则     . 3.曲线在处的切线斜率是     . 4.函数的单调增加区间是     . 5.     .三、计算题(每小题9分,共54分) 1.计算极限.18 2.设,求. 3.设,求. 4.设是由方程确定的函数,求. 5.计算不定积分. 6.计算定积分.四、应用题(本题12分

7、)圆柱体上底的中心到下底的边沿的距离为l,问当底半径与高分别为多少时,圆柱体的体积最大?五、证明题(本题4分)  当时,证明不等式.18高等数学基础样题答案  一、单项选择题  1.B 2.A 3.B 4.C 5.D  二、填空题  1. 2. 3. 4. 5.  三、计算题 1. 2.3.4.5. 6.  四、应用题  当底半径,高时,圆柱体的体积最大.18高等数学基础第一次作业第1章函数第2章极限与连续(一)单项选择题⒈下列各函数对中,( 

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。