欢迎来到天天文库
浏览记录
ID:13517488
大小:74.50 KB
页数:8页
时间:2018-07-23
《第一课时椭圆及其标准方程》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、圆锥曲线与方程考纲导读1.掌握椭圆的定义、标准方程、简单的几何性质、了解椭圆的参数方程.2.掌握双曲线的定义、标准方程、简单的几何性质.3.掌握抛物线的定义、标准方程、简单的几何性质.4.了解圆锥曲线的初步应用.知识网络圆锥曲线椭圆定义标准方程几何性质双曲线定义标准方程几何性质抛物线定义标准方程几何性质第二定义第二定义统一定义直线与圆锥曲线的位置关系椭圆双曲线抛物线a、b、c三者间的关系高考导航圆锥曲线是高中数学的一个重要内容,它的基本特点是数形兼备,兼容并包,可与代数、三角、几何知识相沟通,历来是高考的重点内容
2、。纵观近几年高考试题中对圆锥曲线的考查,基本上是两个客观题,一个主观题,分值21分~24分,占15%左右,并且主要体现出以下几个特点:1.圆锥曲线的基本问题,主要考查以下内容:①圆锥曲线的两种定义、标准方程及a、b、c、e、p五个参数的求解.②圆锥曲线的几何性质的应用.2、求动点轨迹方程或轨迹图形在高考中出现的频率较高,此类问题的解决需掌握四种基本方法:直译法、定义法、相关点法、参数法.3.有关直线与圆锥曲线位置关系问题,是高考的重热点问题,这类问题常涉及圆锥曲线的性质和直线的基本知识以及线段中点、弦长等,分析这
3、类问题时,往往要利用数形结合思想和“设而不求”的方法、对称的方法及韦达定理,多以解答题的形式出现.4.求与圆锥曲线有关的参数或参数范围问题,是高考命题的一大热点,这类问题综合性较大,运算技巧要求较高;尤其是与平面向量、平面几何、函数、不等式的综合,特别近年出现的解析几何与平面向量结合的问题,是常考常新的试题,将是今后高考命题的一个趋势.第一课时椭圆及其标准方程【学习目标】①了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用.②掌握椭圆的定义、几何图形、标准方程及简单性质.【考纲要求】直线方程为B级要
4、求【自主学习】1.椭圆的定义(1)平面内与两定点F1,F2的距离的和等于常数(大于)的点的轨迹叫椭圆,这两个定点叫做椭圆的,之间的距离叫做焦距.注:①当2a=
5、F1F2
6、时,P点的轨迹是.②当2a<
7、F1F2
8、时,P点的轨迹不存在.2.椭圆的标准方程(1)焦点在轴上,中心在原点的椭圆标准方程是:,其中(>>0,且)(2)焦点在轴上,中心在原点的椭圆标准方程是,其中a,b满足:.【基础自测】1.已知△ABC的顶点B、C在椭圆+y2=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,则△ABC的周长是.2
9、.已知方程+=1,表示焦点在y轴上的椭圆,则m的取值范围为.3已知椭圆=1的左、右焦点分别为F1、F2,M是椭圆上一点,N是MF1的中点,若
10、ON
11、=1,则
12、MF1
13、的长等于.4若椭圆的对称轴在坐标轴上,短轴的一个端点与两个焦点组成一个正三角形,焦点到椭圆上的点的最短距离为,则这个椭圆的方程为.[典型例析]例1求适合下列条件的椭圆的标准方程:(1)两个焦点坐标分别为(-4,0)和(4,0),且椭圆经过点(5,0);(2)焦点在y轴上,且经过两个点(0,2)和(1,0);(3)经过P(-2,1),Q(,-2)两点.
14、例2.根据下列条件求椭圆的标准方程:(1)已知P点在以坐标轴为对称轴的椭圆上,点P到两焦点的距离分别为和,过P作长轴的垂线恰好过椭圆的一个焦点;(2)经过两点A(0,2)和B.例3一动圆与已知圆O1:(x+3)2+y2=1外切,与圆O2:(x-3)2+y2=81内切,试求动圆圆心的轨迹方程.例4如图所示,点P是椭圆=1上的一点,F1和F2是焦点,且∠F1PF2=30°,求△F1PF2的面积.[当堂检测]1.若椭圆的中心在原点,一个焦点为(0,5),直线y=3x-2与它相交所得的中点横坐标为,则这个椭圆的方程为.2
15、.椭圆的左、右焦点分别为F1和F2,点P在椭圆上,如果线段PF1的中点在y轴上,那么
16、PF1
17、是
18、PF2
19、的倍.3.已知椭圆(a>5)的两个焦点为F1、F2,且
20、F1F2
21、=8,弦AB过点F1,则△ABF2的周长为.XX中心小学每周例会教师谈课改体会(2017—2018学年第二学期)主题:《德育教育融入小学课堂教学的有效对策》主讲人:2018年3月23日(第3周)内容随着我国小学德育教育不断提档升级,在小学课堂教学中进行德育渗透,日益成为现代小学品德教育的重要目标与方向。在小学教育阶段,是学生形成自身道德体系的关
22、键时期,利用小学课堂教学开展德育教育,可以实现小学生个人思想品格的形成与塑造。在小学课堂教学体系中,蕴含着大量的德育知识与德育教育资源,如何将德育教育与课堂教学有机融合,是现代德育教学探索的主要方向,同时也是我们日常教学的出发点和着力点。一、营造良好的课堂氛围,充分利用教学资源8在小学教育阶段,课堂是培养和激发学生道德意识的重要载体和平台。在道德培养的过程中,最为重要的就
此文档下载收益归作者所有