欢迎来到天天文库
浏览记录
ID:12673422
大小:678.00 KB
页数:10页
时间:2018-07-18
《第30讲 数列求和及数列实际问题》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、第三十讲数列求和及数列实际问题一、复习目标要求1.探索并掌握一些基本的数列求前n项和的方法;2.能在具体的问题情境中,发现数列的数列的通项和递推关系,并能用有关等差、等比数列知识解决相应的实际问题。二、知识精点讲解1.数列求通项与和(1)数列前n项和Sn与通项an的关系式:an=。(2)求通项常用方法①作新数列法。作等差数列与等比数列;②累差叠加法。最基本的形式是:an=(an-an-1)+(an-1+an-2)+…+(a2-a1)+a1;③归纳、猜想法。(3)数列前n项和①重要公式:1+2+…+n=n(n+
2、1);12+22+…+n2=n(n+1)(2n+1);13+23+…+n3=(1+2+…+n)2=n2(n+1)2;②等差数列中,Sm+n=Sm+Sn+mnd;③等比数列中,Sm+n=Sn+qnSm=Sm+qmSn;④裂项求和将数列的通项分成两个式子的代数和,即an=f(n+1)-f(n),然后累加抵消掉中间的许多项,这种先裂后消的求和法叫裂项求和法。用裂项法求和,需要掌握一些常见的裂项,如:、=-、n·n!=(n+1)!-n!、Cn-1r-1=Cnr-Cn-1r、=-等。⑤错项相消法对一个由等差数列及等比数
3、列对应项之积组成的数列的前n项和,常用错项相消法。,其中是等差数列,是等比数列,记,则,…⑥并项求和把数列的某些项放在一起先求和,然后再求Sn。数列求通项及和的方法多种多样,要视具体情形选用合适方法。⑦通项分解法:2.递归数列数列的连续若干项满足的等量关系an+k=f(an+k-1,an+k-2,…,an)称为数列的递归关系。由递归关系及k第10页(共10页)___________________________________________________________个初始值可以确定的一个数列叫做递归
4、数列。如由an+1=2an+1,及a1=1,确定的数列即为递归数列。递归数列的通项的求法一般说来有以下几种:(1)归纳、猜想、数学归纳法证明。(2)迭代法。(3)代换法。包括代数代换,对数代数,三角代数。(4)作新数列法。最常见的是作成等差数列或等比数列来解决问题。三.典例解析题型1:裂项求和例1.已知数列为等差数列,且公差不为0,首项也不为0,求和:。解析:首先考虑,则=。点评:已知数列为等差数列,且公差不为0,首项也不为0,下列求和也可用裂项求和法。例2.求。解析:,点评:裂项求和的关键是先将形式复杂的因
5、式转化的简单一些。题型2:错位相减法例3.设a为常数,求数列a,2a2,3a3,…,nan,…的前n项和。解析:①若a=0时,Sn=0;②若a=1,则Sn=1+2+3+…+n=;③若a≠1,a≠0时,Sn-aSn=a(1+a+…+an-1-nan),Sn=。例4.已知,数列是首项为a,公比也为a的等比数列,令,求数列的前项和。第10页(共10页)___________________________________________________________解析:,①-②得:,点评:设数列的等比数列,数列
6、是等差数列,则数列的前项和求解,均可用错位相减法。题型3:倒序相加例5.求。解析:。①又。②所以。点评:Sn表示从第一项依次到第n项的和,然后又将Sn表示成第n项依次反序到第一项的和,将所得两式相加,由此得到Sn的一种求和方法。例6.设数列是公差为,且首项为的等差数列,求和:解析:因为,,。点评:此类问题还可变换为探索题形:已知数列的前项和,是否存在等差数列使得对一切自然数n都成立。题型4:其他方法例7.求数列1,3+5,7+9+11,13+15+17+19,…前n项和。解析:本题实质是求一个奇数列的和。在该
7、数列的前n项中共有个奇数,故第10页(共10页)___________________________________________________________。例8.求数列1,3+,32+,……,3n+的各项的和。解析:其和为(1+3+……+3n)+(+……+)==(3n+1-3-n)。题型5:数列综合问题例9.(2006年浙江卷)已知函数=x3+x2,数列
8、xn
9、(xn>0)的第一项x1=1,以后各项按如下方式取定:曲线y=在处的切线与经过(0,0)和(xn,f(xn))两点的直线平行(如图)。求证
10、:当n时:(I);(II)。解析:(I)因为所以曲线在处的切线斜率因为过和两点的直线斜率是所以.(II)因为函数当时单调递增,而所以,即因此又因为令则因为所以因此故点评:数列与解析几何问题结合在一块,数列的通项与线段的长度、点的坐标建立起联系。第10页(共10页)___________________________________________________________例10.(2006年
此文档下载收益归作者所有