二次函数实际应用

二次函数实际应用

ID:11365781

大小:201.00 KB

页数:11页

时间:2018-07-11

二次函数实际应用_第1页
二次函数实际应用_第2页
二次函数实际应用_第3页
二次函数实际应用_第4页
二次函数实际应用_第5页
资源描述:

《二次函数实际应用》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、二次函数应用——实际生活问题一、知识点睛二次函数的应用:最大面积;最大利润;和一元二次方程的关系.二、精讲精练1.已知:在△ABC中,BC=20,高AD=16,内接矩形EFGH的顶点E、F在BC上,G、H分别在AC、AB上,求内接矩形EFGH的最大面积.2.(2011湖北武汉)星光中学课外活动小组准备围建一个矩形生物苗圃园.其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.(1)若平行于墙的一边的长为y米,直接写出y与x之间的函数关系式及其自变量x的取值范围;(2)垂直于墙的一边的长为多少米时

2、,这个苗圃园的面积最大,并求出这个最大值;(3)当这个苗圃园的面积不小于88平方米时,试结合函数图象,直接写出x的取值范围.3.(2009山东烟台)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数关系式;11(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,

3、商场每天销售这种冰箱的利润最高?最高利润是多少?1.(2009湖北武汉)某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?2.有一座抛物

4、线型拱桥,正常水位时,桥下水面宽度为20m,拱顶距水面4m.(1)如图所示的直角坐标系中,求出该抛物线的表达式.(2)在正常水位的基础上,当水位上升hm时,桥下水面的宽度为dm,求出将d表示为h的函数关系式.(3)设正常水位时,桥下的水深为2m,为保证过往船只的顺利通过,桥下水面的宽度不得小于18m,求水深超过多少米时就会影响过往船只在桥下顺利航行?114m1.(2001吉林)如图,一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05米.(1)建立

5、如图所示的直角坐标系,求抛物线的解析式;(2)该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少?111.(2010四川南充)如图,在水平地面点A处有一网球发射器向空中发射网球,网球飞行路线是一条抛物线,在地面上落点为B.有人在直线AB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让网球落入桶内.已知AB=4米,AC=3米,网球飞行最大高度OM=5米,圆柱形桶的直径为0.5米,高为0.3米(网球的体积和圆柱形桶的厚度忽略不计).(1)如果竖直摆放5个圆柱形桶时,网球能不能落入桶内?(2)当竖直摆放圆

6、柱形桶多少个时,网球可以落入桶内?11讲义答案:一、知识点睛二、精讲精练1.802.(1),;(2)m,112.5m2;(3),图略3.(1)();(2)每台冰箱应降价200元;(3)每台冰箱降价150元,商场每天销售这种冰箱的利润最高,最高利润是5000元.114.(1),的范围是且为整数;(2)每件商品的售价定为55或56元时,每个月可获得最大利润,最大的月利润是2400元;(3)每件商品的售价定为51或60元时,每个月的利润恰为2200元;售价在51~60范围时,每个月的利润不低于2200元.5.(1);(2);(3)水深超过2.76m时就会影响过往

7、船只在桥下顺利航行.6.(1);(2)球出手时,他跳离地面的高度是0.2m.7.(1)不能落入桶内;(2)当竖直摆放圆柱形桶为8,9,10,11,或12个时,网球可以落入桶内。作业:1.(2009湖北鄂州)如图所示,某校计划将一块形状为锐角三角形ABC的空地进行生态环境改造.已知△ABC的边BC长120米,高AD长80米.学校计划将它分割成△AHG,△BHE,△GFC和矩形EFGH四部分(如图).其中矩形EFGH的一边EF在边BC上.其余两个顶点H,G分别在边AB,AC上.现计划在△AHG上种草,每平方米投资6元;在△BHE,△GFC上都种花,每平方米投资

8、10元;在矩形EFGH上兴建爱心鱼池,每平方米投资4元.(1)当F

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。