欢迎来到天天文库
浏览记录
ID:11137731
大小:1.96 MB
页数:76页
时间:2018-07-10
《易拉罐的最优设计》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、易拉罐的最优设计1问题重述我们只要稍加留意就会发现销量很大的饮料(例如饮料量为355毫升的可口可乐、青岛啤酒等)的饮料罐(易拉罐)的形状和尺寸几乎都是一样的。看来,这并非偶然,这应该是某种意义下的最优设计。当然,对于单个的易拉罐来说,这种最优设计可以节省的钱可能是很有限的,但是如果是生产几亿,甚至几十亿个易拉罐的话,可以节约的钱就很可观了。现在就请你们小组来研究易拉罐的形状和尺寸的最优设计问题。具体说,请你们完成以下的任务:1、取一个饮料量为355毫升的易拉罐,例如355毫升的可口可乐易拉罐,测量你们认为验证模型所需要的数据,例如易拉
2、罐各部分的直径、高度,厚度等,并把数据列表加以说明;如果数据不是你们自己测量得到的,那么你们必须注明出处。2、设易拉罐是一个正圆柱体。什么是它的最优设计?其结果是否可以合理地说明你们所测量的易拉罐的形状和尺寸,例如说,半径和高之比,等等。3、设易拉罐是一旋转体,上面部分是一个正圆台,下面部分是一个正圆柱体。什么是它的最优设计?其结果是否可以合理地说明你们所测量的易拉罐的形状和尺寸。例如说,半径和高之比,等等。4、利用你们对所测量的易拉罐的洞察和想象力,做出你们自己的关于易拉罐形状和尺寸的最优设计。5、用你们做本题以及以前学习和实践数学
3、模型的亲身体验,写一篇短文(不超过1000字,你们的论文中必须包括这篇短文),阐述什么是数学建模、它的关键步骤,以及难点。2评阅要点饮料罐(易拉罐)的最优设计涉及多方面的问题:怎样的制造过程可以降低材料耗损(减少边角料等)、能源、用更少的部件来制作、改换材料以减重量或更为廉价、变更形状更便于制造和灌装、甚至换一种加工次序等等,其目的就是既要满足用户的需求又要降低成本。据命题人的了解(包括询问可口可乐公司有关人员),该公司的易拉罐都是铝制的,罐的形状和尺寸有一个演变过程,现在用的两片罐的中心端面形状大致如下:这种罐的制作过程大致如下:先
4、做成一个直圆柱(正圆柱)的杯子,再利用铝的延性,在加热条件下,把罐的侧边拉到一定的高度,略为收口等,便于和较厚的同质圆片焊接,内外涂层,灌装、测试、打包、外运等。在美国,这种形状易拉罐各部分(以千分之一英寸为单位)的厚度大致如下:底部厚:8—11,侧壁厚:4,颈部厚:6,顶盖厚:9。据说在其他地方生产的易拉罐,各部分的厚度可以略有变化。本题主要测试学生在测量或间接获得数据的基础上,经过观察、分析做出合理的简化假设,形成数学模型,正确、合理并简捷地求解相应的数学问题,合理地验证自己的数学模型(合理地解释所测量的易拉罐的形状和尺寸)。特别
5、是希望学生根据自己的想象力做出有自己特色的建议。更重要的是,这种最优设计的数学建模也许是关键(或重要)的一步,但决不是全部,在有些情况下物理、工程等考虑可能更重要(或不可忽略),希望同学了解真正的最优设计是一个相当复杂的过程,数学不可能单打独斗。1、共15分,考察学生的动手能力,自己测量的10分以上,体积有错应该扣2分),从网上抄的最多12分。能够说明自己是怎么测量的,并列表说明(尽管有的数据可能误差较大),应该说相当好;能够从网上查到比较准确的数据,并说明出处,表明了一种能力,也是相当好的;照抄其他文章就不太好了。2、共15分,要求
6、模型表述清晰,其中假设4分,模型与计算9分,验证2分。无二阶导数大于零的验证不扣分。根据如下的中心端面的形状,可以计算出易拉罐所用材料的总体积(目标函数)。罐内的体积已知(大于355立方厘米)为约束条件之一。还应该有其他的约束条件,例如,顶盖有拉环,从而顶盖的直径也是有限制的,要能够用手握住,因此,罐的直径是有限制的,等等。3、共30分,其中假设(大、小半径)、建模占15分,计算、验证、分析占15分。目标函数考虑材料的体积是最好的,若考虑面的价格也可以。对于中心端面形状为如图所示的情形,如果还考虑材料的体积的话,可以有如下的做法。设
7、饮料罐侧壁材料的厚度为,顶盖材料的厚度为,底部材料的厚度为,饮料罐内的体积为。圆台内部上底的半径为,下底的半径为,高为。圆柱内部的半径为,高为。这里为自变量,为参数。饮料罐所用材料的总体积(目标函数)为:约束条件和2中的类似。这部分要求学生能正确、合理和简捷地求解,能够分析所得计算结果。如果还能够从多元函数无约束极值的判定的充分条件,Hesse矩阵的正定性等方面进行分析,然后给出合理的结论和解释,这就相当好了。如果能够从其他角度考虑,而且目标函数、约束条件清楚,能够正确、合理和简捷地求解,给出合理的结论和解释,应该说更好了。4、共15
8、分,其中假设、建模5分,计算、验证、分析占10分,要求说明比2和3好在哪里。要求学生想象力做出自己的最优设计。从材料总体积的角度考虑,可能有同学会研究中心端面形状为或更复杂的形状的易拉罐。也可以从顶盖圆片下料的角度研究
此文档下载收益归作者所有