欢迎来到天天文库
浏览记录
ID:13720167
大小:388.50 KB
页数:11页
时间:2018-07-24
《易拉罐形状和尺寸的最优设计模型》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、易拉罐形状和尺寸的最优设计模型钱益锋罗坚坚董龙寅(2006年获全国一等奖)摘要:本文主要考虑当容积一定时,如何设计易拉罐的形状和尺寸,使得所用材料最省。首先对易拉罐进行测量,对问题二、问题三、问题四建立数学模型,并利用LINGO软件结合所测的数据进行计算,得出最优易拉罐模型的设计。模型一,对正圆柱体形状的易拉罐,当容积一定时,以材料体积最小为目标,建立材料体积的函数关系式,并通过求二元函数条件极值得知,当圆柱高为直径两倍时,最经济,并用容积为360ml进行验算,算得,与市场上净含量为355ml的测得的数据基本接近。模型二,对上面部
2、分为正圆台、下面部分为正圆柱的易拉罐同样在容积量一定时,考虑所用材料最省,建立优化模型,并通过LINGO软件仍用容积为360ml进行验算,算得,,,,高之和约为直径的两倍。模型三,考虑到罐底承受的压力,根据力学上横梁支点的受力与拱桥设计的原理,设计底部支架(环形)与一定弧度的拱面,同时利用黄金分割,将直径与高之比设为0.618,建立容积量一定时材料最省的优化模型,再将有关数据代入计算,得到结论,现行易拉罐的设计从某种意义上不乏是最优设计。关键词:优化模型易拉罐非线性规划正圆柱正圆台一、问题重述销量很大的饮料容器(即易拉罐)的形状和
3、尺寸几乎都是一样的。这应该是某种意义下的最优设计,而不是偶然。当然,对于单个的易拉罐来说,这种最优设计可以节省的钱可能是很有限的,但是如果是生产几亿,甚至几十亿个易拉罐的话,可以节约的钱就很可观了。现针对以下问题,研究易拉罐的形状和尺寸的最优设计问题。问题一:取一个饮料量为355毫升的易拉罐,例如355毫升的可口可乐饮料罐,测量验证模型所需要的数据,例如易拉罐各部分的直径、高度,厚度等,并把数据列表加以说明;如果数据不是测量得到的,那么必须注明出处。问题二:设易拉罐是一个正圆柱体。什么是它的最优设计?其结果是否可以合理地说明所测量
4、的易拉罐的形状和尺寸,例如说,半径和高之比,等等。问题三:设易拉罐的中心纵断面如图1所示,即上面部分是一个正圆台,下面部分是一个正圆柱。什么是它的最优设计?其结果是否可以合理地说明你们所测量的易拉罐的形状和尺寸。问题四:利用所测量的易拉罐的洞察和想象力,做出关于易拉罐形状和尺寸的最优设计。同时,以11做本题以及以前学习和实践数学建模的亲身体验,写一篇短文(不超过1000字,论文中必须包括这篇短文),阐述什么图1是数学建模、它的关键步骤,以及难点。二、问题分析在易拉罐设计的实际情况中,我们必须保证罐内体积大于饮料的净含量,同时考虑到
5、饮料对罐体各部分的应力,需确定罐盖、罐底和罐壁的厚度,在此情况下的最优是使得容积一定时,所用的材料最省。在问题一中对于各个部分的数据可以直接测量,利用千分卡对易拉罐进行测量;问题二是对正圆柱体的易拉罐在容积一定时,以半径和高之比为衡量最优设计的标准;问题三中,对比问题一中所测得的数据,发现易拉罐罐盖、罐底的厚度是罐壁的两倍,因此我们在解决此问题时可以假设罐盖、罐底的厚度是罐壁的两倍,再利用规划方法求解由圆台和圆柱体组成的易拉罐的最优设计。在问题四中根据问题二、三的模型所求得的数据与测量的数据进行比较,以及观察市场上正规厂家生产的碳
6、酸和非碳酸饮料易拉罐的异同之处,作出关于易拉罐形状和尺寸的最优模型。三、模型假设1、根据薄壁圆筒的应力分析,假设易拉罐罐盖、罐底的厚度是罐壁的两倍。2、易拉罐各接口处的材料忽略不计。3、易拉罐各部分所用的材料相同。4、单位体积材料的价格一定。5、相同类型易拉罐的容积相同。四、模型建立与求解目前市场上大部分的易拉罐形状可以分成两类:一类主体部分是正圆柱体,正圆柱体上面部分是正圆台(如图2所示);另一类主体部分是正圆柱体,正圆柱体上面部分与下面部分都是正圆台(如图3所示)。如图2如图3我们用千分卡尺对杭州中萃食品有限公司生产的可口可乐
7、易拉罐进行了测量,分别测量数据如下表。(单位;)罐高123.7罐柱内径61.2911上圆台高13.5下圆台高7.7罐盖内径58.17罐底厚0.29罐盖厚0.29罐底拱高10.11圆柱体高102.5罐壁厚0.135由上表可知:罐底与罐盖的厚度大约是柱壁厚度的2倍;高大约为正圆柱直径的2倍。易拉罐形状和尺寸的最优设计就是确保盛放饮料时容器不变形、放置稳定、运输安全的前提下,如何设计形状与尺寸才能使一定容积量的易拉罐所用的材料最省,为此我们分别对问题二、问题三、问题四建立模型如下:模型一:正圆柱体模型假设易拉罐是一个正圆柱体,罐内半径为
8、,罐内高为,罐壁厚为,根据假设1可知,罐底与罐盖厚为,所以制作材料的体积为:=因为,故项可以忽略不计。因而于是,问题就是求目标函数在条件下的最优解。即mins.t.利用Lagrange乘子法求解,作函数令11即消去得:,,。唯一的驻点就是问题的极值
此文档下载收益归作者所有