欢迎来到天天文库
浏览记录
ID:10866529
大小:71.50 KB
页数:10页
时间:2018-07-08
《谈数学变式教学在高中数学教学中的应用》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、谈数学变式教学在高中数学教学中的应用陇东中学贾恒旺随着高中新课改在全国范围内的全面实施,几乎所有数学教师都有这样的感受,就是“时间紧,教学内容多”。然而,部分教师为了争取时间便满堂灌,致使学生的掌握情况非常不好。面对这样的情形,变式教学在数学课堂中的应用就显得尤为重要。一、什么是数学变式教学 变式教学是运用不同的知识和方法,对有关数学概念、公式、定理、习题等进行不同角度、不同层次、不同背景的变化,有意识的引导学生从“变”的现象中发现“不变”的本质,从“不变”中探求规律。变式教学最终是为了通过变化让学生掌握变化中的不变,能从不同方面、不同角度和不同情况来说明某一
2、事物,从而概括出事物的一般属性,使学生能真正理解知识和方法的本质原理的教学。变式教学泛指知识形成过程中的问题设计变式、基本概念辨析型变式、定理和公式的深化变式、例题和习题的一题多解、一法多用、一题多变、多题归一等。二、高中数学教学中应用变式教学的主要意义:(一)、利用变式教学创设教学情境,激发学生学习积极性。高中数学的大部分概念比较抽象,教师在教学中如果直接抛出概念,学生很难接受。而如果根据概念类型,设计一系列变式,将概念还原到客观实际(如实例、模型或已有经验、题组等)提出问题,为学生创设生动形象的教学情境,就可以大大激发学生学习数学的热情和积极性。例如:在进行
3、指数函数概念教学时,可以这样进行变式教学:(1)提出问题:我有一张白纸,把它撕成两半,将它们重叠后再撕一次,重叠后再撕一次„„那么撕扯3次后把所有的纸重叠放置有多少层?5次呢?15次呢?(2)若一张纸厚0.1毫米,那么撕纸15次后把所有的纸重叠放置有多高?有一人高吗?若撕掉20次呢?(3)你能建立起“纸的张数y与撕纸的次数x”之间的函数关系式吗?生活中就存在这样一类函数,从而给出指数函数的概念。通过这样一组由特殊到一般的变式题,可以帮助学生建立感性经验和抽象概念之间的联系,激发学生的思维,引导学生积极探索。(二)、利用变式教学预设“陷阱”,培养学生思维的严谨性。
4、在概念、定理及公式的教学过程中,通过对有关数学概念、定理、公式等进行不同角度、不同层次、不同背景的变化,有意识的引导学生发现变化中的不变,明确并凸显出概念、定理及公式的条件、结论和适用范围、注意事项等关键之处,让学生深入理解概念、定理及公式的本质,从而培养学生严密的逻辑推理能力。例如:在引入奇偶函数定义之后,为了让学生透彻理解该定义,掌握定义的内涵和外延,特别是搞清楚“定义域关于原点对称”等有关问题,可利用辨析型变式设计下列变式题组织学生讨论。判断下列函数的奇偶性,并说明理由:(1)(2)(05、,根据函数的定义域将函数进行化简后再判断f(-x)与f(x)的关系。这组变式题,通过引发学生头脑中固有思维模式的冲突,使学生加深了对“定义域关于原点对称”的必要性的理解。教学中,设置反例、错例辨析的变式训练,通过对问题正面、侧面、反面的分析,使学生发现问题的症结所在,达到去伪存真、由此及彼的目的。(三)、利用变式教学深化基础知识,拓展学生的数学思维。著名的数学教育家波利亚曾形象地指出:“好问题同某种蘑菇有些相像,它们都成堆地生长,找到一个以后,你应当在周围找找,很可能附近就有好几个。”数学教学中,通过对一个基本问题的变式,引导学生运用类比、联想、特殊化和一般化的6、思维方法,探索问题的发展变化,使其在更深入、更透彻地理解问题的本质的同时拓展了数学思维。例如:在进行增、减函数的概念教学时,为了让学生熟练掌握增、减函数的定义,需要进行概念深化变式。也就是探求概念的等价形式或变式含义,并探讨等价形式及变式含义的应用,达到透彻理解概念、灵活应用概念的目的。因此要学生注意增、减函数定义的如下两种等价形式:(x1-x2)[f(x1)-f(x2)]>0或的解释.在形成概念后,不应急于应用概念去解决问题,而应对概念作进一步的探讨,通过辨析型变式和等价深化变式,使学生对概念有更加深刻的理解,让学生既知其然,又知其所以然。数学变式教学以一胜多7、、举一反三的变式训练,给数学教学注入了生机和活力,提高了学生的兴趣,调动了学生的积极性,使其学得轻松,并且避免“题海”,从而提高了课堂教学效率和教学质量,对学生掌握知识、促进思维和培养能力等方面起着非常重要的作用。然而,变式教学不能变成教师整节课的精彩演绎和拓展,决不能一时兴起就刹不住车,教师讲得神采飞扬,酣畅淋漓,学生听得头昏脑胀,应对不暇。教师必需注意学生的感觉,控制变式的节奏、变式的维度及变式的深度。“变”与“不变”,都要让学生去体验。教师的作用应该主要是引导和点拨,使学生去思考和比较,发现变式问题中的“变”与“不变”。三、数学变式教学在高中数学教学中的应8、用举例例1:如在新授定理
5、,根据函数的定义域将函数进行化简后再判断f(-x)与f(x)的关系。这组变式题,通过引发学生头脑中固有思维模式的冲突,使学生加深了对“定义域关于原点对称”的必要性的理解。教学中,设置反例、错例辨析的变式训练,通过对问题正面、侧面、反面的分析,使学生发现问题的症结所在,达到去伪存真、由此及彼的目的。(三)、利用变式教学深化基础知识,拓展学生的数学思维。著名的数学教育家波利亚曾形象地指出:“好问题同某种蘑菇有些相像,它们都成堆地生长,找到一个以后,你应当在周围找找,很可能附近就有好几个。”数学教学中,通过对一个基本问题的变式,引导学生运用类比、联想、特殊化和一般化的
6、思维方法,探索问题的发展变化,使其在更深入、更透彻地理解问题的本质的同时拓展了数学思维。例如:在进行增、减函数的概念教学时,为了让学生熟练掌握增、减函数的定义,需要进行概念深化变式。也就是探求概念的等价形式或变式含义,并探讨等价形式及变式含义的应用,达到透彻理解概念、灵活应用概念的目的。因此要学生注意增、减函数定义的如下两种等价形式:(x1-x2)[f(x1)-f(x2)]>0或的解释.在形成概念后,不应急于应用概念去解决问题,而应对概念作进一步的探讨,通过辨析型变式和等价深化变式,使学生对概念有更加深刻的理解,让学生既知其然,又知其所以然。数学变式教学以一胜多
7、、举一反三的变式训练,给数学教学注入了生机和活力,提高了学生的兴趣,调动了学生的积极性,使其学得轻松,并且避免“题海”,从而提高了课堂教学效率和教学质量,对学生掌握知识、促进思维和培养能力等方面起着非常重要的作用。然而,变式教学不能变成教师整节课的精彩演绎和拓展,决不能一时兴起就刹不住车,教师讲得神采飞扬,酣畅淋漓,学生听得头昏脑胀,应对不暇。教师必需注意学生的感觉,控制变式的节奏、变式的维度及变式的深度。“变”与“不变”,都要让学生去体验。教师的作用应该主要是引导和点拨,使学生去思考和比较,发现变式问题中的“变”与“不变”。三、数学变式教学在高中数学教学中的应
8、用举例例1:如在新授定理
此文档下载收益归作者所有