大学微积分下册教案

大学微积分下册教案

ID:10843803

大小:34.50 KB

页数:12页

时间:2018-07-08

大学微积分下册教案_第1页
大学微积分下册教案_第2页
大学微积分下册教案_第3页
大学微积分下册教案_第4页
大学微积分下册教案_第5页
资源描述:

《大学微积分下册教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、精品文档大学微积分下册教案教案2014——201学年教师姓名:所在系:讲授课程:微积分授课班级:使用教材:《微积分》刘贵基著总学时数:128学时山东财经大学第一章:函数与极限1.1初等函数图象及性质1.1.1幂函数函数叫做幂函数。幂函数的定义域,要看m是什么数而定。例如,当m=时,y=x3的定义域是;当m=1/2时,y=x1/2的定义域是[0,+∞);当m=-1/2时,y=x-1/2的定义域是。但不论m取什么值,幂函数在内总有定义。1.1.指数函数与对数函数1.指数函数函数y=ax叫做指数函数,它的定义域是区间。因为对于任何实数值x,总有ax>0,又a0=1,所以指数函数的图形

2、,总在x轴的上方,且通过点。若a>1,指数函数ax是单调增加的。若02016全新精品资料-全新公文范文-全程指导写作–独家原创12/12精品文档指数函数y=ax的反函数,记作y=logax,叫做对数函数。它的定义域是区间。对数函数的图形与指数函数的图形关于直线y=x对称。y=logax的图形总在y轴上方,且通过点。若a>1,对数函数logax是单调增加的,在开区间内函数值为负,而在区间内函数值为正。若0正弦函数和余弦函数都是以2π为周期的周期函数,它们的定义域都是区间,值域都是必区间[-1,1]。正弦函数是奇函数,余弦函数是偶函数。正切函数和余切函数都是以π为周期的周期函数,它

3、们都是奇函数。.反三角函数反三角函数是三角函数的反函数,其图形都可由相应的三角函数的图形按反函数作图法的一般规则作出。这四个反三角函数都是多值函数。但是,我们可以选取这些函数的单值支。例如,把Arcsinx的值限制在闭区间[-,]上,称为反正弦函数的主值,并记作arcsinx。。这样,函数y=arcsinx就是定义在闭区间[-1,1]上的单值函数,且有1.2数列极限的概念设{}是一个数列,a是实数,如果对于任意给定的}的极限,或者称数列{2016全新精品资料-全新公文范文-全程指导写作–独家原创12/12精品文档,总存在一个正整数N,当n>N时都有,a即为的极限。,我们就称a是

4、数列{}收敛,且收敛于a,记为数列极限的几何解释:以a为极限就是对任意给定的开区间部落在这个区间内。1.函数极限的概念设函数f在定存在的极限,记作有。例如:点附近有定义,设A为一个定数,如果对任意各定时,总有,我们就称A是函数f在,一点点极限存在,这里我们不要求f在点有定义,所以才,当x=1时,函数是没有定义的,但在x=1点函数的极限存在,为2。1.单调有界数列必有极限单调有界数列必有极限,是判断极限存在的重要准则之一,具体叙述如下:如果数列满足条件,就称数列是单调增加的;反之则称为是单调减少的。2016全新精品资料-全新公文范文-全程指导写作–独家原创12/12精品文档在前面

5、的章节中曾证明:收敛的数列必有界。但也曾指出:有界的数列不一定收敛。现在这个准则表明:如果数列不仅有界,而且是单调的,则其极限必定存在。对这一准则的直观说明是,对应与单调数列的点限趋近某一定点;或者只可能向一个方向移动,所以只有两种可能情形:或者无沿数轴移向无穷远。但现在数列又是有界的,这就意味着移向无穷远已经不可能,所以必有极限。从这一准则出发,我们得到一个重要的应用。考虑数列可知这个数列极限存在,通常用字母e来表示它,即时,函数,易证它是单调增加且有界,故。可以证明,当x取实数而趋于或的极限存在且都等于e,这个e是无理数,它的值是e=.718281828459045…1.柯

6、西极限存在准则2016全新精品资料-全新公文范文-全程指导写作–独家原创12/12精品文档我们发现,有时候收敛数列不一定是单调的,因此,单调有界数列必有极限准则只是数列收敛的充分条件,而不是必要的。当然,其中有界这一条件是必要的。下面叙述的柯西极限存在准则,它给出了数列收敛的充分必要条件。柯西极限存在准则数列收敛的充分必要条件是:。对于任意给定的正数,存在着这样的正整数N,使得当m>N,n>N时,就有必要性的证明设,若任意给定正数,则也是正数,于是由数列极限的定义,存在着正整数N,。当n>N时,有;同样,当m>N时,也有因此,当m>N,n>N时,有所以条件是必要的。充分性的证明

7、从略。这准则的几何意义表示,数列号码的点收敛的充分必要条件是:对于任意给定的正数,在数轴上一切具有足够大,任意两点间的距离小于。柯西极限存在准则有时也叫做柯西审敛原理。1.6连续函数1.6.12016全新精品资料-全新公文范文-全程指导写作–独家原创12/12精品文档定义:若函数f在x0点的附近包括x0点本身有定义,并且,则称f在x0点连续,x0为f的连续点。1.6.充要条件:f在x0点既是左连续又是右连续。初等函数如三角、反三角函数,指数、对数函数等都是在自定义区间内的连续函数。1.6.三

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。