欢迎来到天天文库
浏览记录
ID:8609263
大小:131.50 KB
页数:7页
时间:2018-04-03
《《提公因式法》参考教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、提公因式法一、教学目标(一)、知识与技能:(1)使学生了解因式分解的意义,理解因式分解的概念。(2)认识因式分解与整式乘法的相互关系——互逆关系,并能运用这种关系寻求因式分解的方法。(二)、过程与方法:[来源:Z#xx#k.Com](1)由学生自主探索解题途径,在此过程中,通过观察、类比等手段,寻求因式分解与因数分解之间的关系,培养学生的观察能力,进一步发展学生的类比思想。(2)由整式乘法的逆运算过渡到因式分解,发展学生的逆向思维能力。(3)通过对分解因式与整式的乘法的观察与比较,培养学生的分析问题能力与综
2、合应用能力。(三)、情感态度与价值观:让学生初步感受对立统一的辨证观点以及实事求是的科学态度。二、教学重点和难点重点:因式分解的概念及提公因式法。难点:正确找出多项式各项的公因式及分解因式与整式乘法的区别和联系。三、教学过程教学环节:活动1:复习引入看谁算得快:用简便方法计算:(1)7/9×13-7/9×6+7/9×2=; (2)-2.67×132+25×2.67+7×2.67=;(3)992–1=。设计意图:如果说学生对因式分解还相当陌生的话,相信学生对用简便方法进行计算应该相当熟悉.引入这一步的目的旨在
3、让学生通过回顾用简便方法计算——因数分解这一特殊算法,使学生通过类比很自然地过渡到正确理解因式分解的概念上,从而为因式分解的掌握扫清障碍,本环节设计的计算992–1的值是为了降低下一环节的难度,为下一环节的理解搭一个台阶.注意事项:学生对于(1)(2)两小题逆向利用乘法的分配律进行运算的方法是很熟悉,对于第(3)小题的逆向利用平方差公式的运算则有一定的困难,因此,有必要引导学生复习七年级所学过的整式的乘法运算中的平方差公式,帮助他们顺利地逆向运用平方差公式。活动2:导入课题1.P165的探究(略);2.看
4、谁想得快:993–99能被哪些数整除?你是怎么得出来的?设计意图:引导学生把这个式子分解成几个数的积的形式,继续强化学生对因数分解的理解,为学生类比因式分解提供必要的精神准备。活动3:探究新知看谁算得准:计算下列式子:(1)3x(x-1)=;(2)m(a+b+c)=;(3)(m+4)(m-4)=;(4)(y-3)2=;[来源:学科网ZXXK](5)a(a+1)(a-1)=;根据上面的算式填空:(1)ma+mb+mc=;(2)3x2-3x=;(3)m2-16=;(4)a3-a=;(5)y2-6y+9=。在第一
5、组的整式乘法的计算上,学生通过对第一组式子的观察得出第二组式子的结果,然后通过对这两组式子的结果的比较,使学生对因式分解有一个初步的意识,由整式乘法的逆运算逐步过渡到因式分解,发展学生的逆向思维能力。活动4:归纳、得出新知比较以下两种运算的联系与区别:(1)a(a+1)(a-1)=a3-a(2)a3-a=a(a+1)(a-1)在第三环节的运算中还有其它类似的例子吗?除此之外,你还能找到类似的例子吗?结论:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。其中,把多项式中各项的公因式提取出
6、来做为积的一个因式,多项式各项剩下部分做为积的另一个因式这种因式分解的方法叫做提公因式法。辨一辨:下列变形是因式分解吗?为什么?(1)a+b=b+a(2)4x2y–8xy2+1=4xy(x–y)+1(3)a(a–b)=a2–ab(4)a2–2ab+b2=(a–b)2设计意图:通过学生的讨论,使学生更清楚以下事实:(1)分解因式与整式的乘法是一种互逆关系;(2)分解因式的结果要以积的形式表示;(3)每个因式必须是整式,且每个因式的次数都必须低于原来的多项式的次数;(4)必须分解到每个多项式不能再分解为止。活动
7、5:应用新知例题学习:P166例1、例2(略)设计意图:让学生进一步理解提公因式法进行因式分解。活动6:课堂练习1.P167练习;2.看谁连得准x2-y2(x+1)29-25x2y(x-y)x2+2x+1(3-5x)(3+5x)xy-y2(x+y)(x-y)3.下列哪些变形是因式分解,为什么?(1)(a+3)(a-3)=a2-9[来源:Zxxk.Com](2)a2-4=(a+2)(a-2)(3)a2-b2+1=(a+b)(a-b)+1(4)2πR+2πr=2π(R+r)设计意图:通过学生的反馈练习,使教师能
8、全面了解学生对因式分解意义的理解是否到位,以便教师能及时地进行查缺补漏。活动7:课堂小结从今天的课程中,你学到了哪些知识?掌握了哪些方法?明白了哪些道理?设计意图:通过学生的回顾与反思,强化学生对因式分解意义的理解,进一步清楚地了解分解因式与整式的乘法的互逆关系,加深对类比的数学思想的理解。活动8:课后作业课本P170习题的第1、4大题。设计意图:通过作业的巩固对因式分解,特别是提公因式法理解并学会应用。四、板书
此文档下载收益归作者所有