4(2)证明当a=0时,由f(x)0,构造函数h(x)=ex-lnx-2(x>0),h'(x)=ex-1x,h″(x)=ex+1x2>0,∴h'(x)在(0,+∞)上单调递增,h'12=e-2<0,h'(1)=e-1>0,故存在x0∈12,1,使得h'(x0)=0,即ex0=1x0.当x∈(0,x0)时,h'(x)<0,h(x)单调递减;当x∈(x0,+∞)时,h'(x)>0,h(x)单调递增.所以x=x0时,h(x)取得极小值,也即是最小值.h(x0)=ex0-lnx0-2=1x0-ln1ex0-2=1x0+x0-2>21x0·x0-2=0,所以h(x)=ex-lnx-2>0,故f(x)0,则g'(x)=1-lnx-1x2=-lnxx2,当00,g(x)单调递增,当x>1时,g'(x)<0,g(x)单调递减,∴g(x)max=g(1)=1,∴k≥1.(2)证明由(1)知,k=1时,有不等式lnx≤x-1对任意x∈(0,+∞)恒成立,当且仅当x=1时,取“=”号,∴当x∈(1,+∞),lnx1,且n∈N*),则ln1+1n2<1n2<1n2-1=121n-1-1n+1,∴ln1+122+ln1+132+…+ln1+1n2<122+1212-14+…+1n-2-1n+1n-1-1n+1=14+1212+13-1n-1n+1<14+1212+13=23,即ln1+1221+132…1+1n2<23(n∈N*,n>1),∴1+1221+132…1+1n21).4.(1)解由条件知,函数f(x)的定义域为(0,+∞),f'(x)=-lnx.当x∈(0,1)时,f'(x)>0,f(x)单调递增;当x∈(1,+∞)时,f'(x)<0,f(x)单调递减.即在区间(0,1)内,函数f(x)单调递增;在区间(1,+∞)内,函数f(x)单调递减.
5(2)证明(方法一)由blna-alnb=a-b得1a1-ln1a=1b1-ln1b,即f1a=f1b.由a≠b,得1a≠1b.由(1)不妨设1a∈(0,1),1b∈(1,+∞),则f1a>0,从而f1b>0,得1b∈(1,e),①令g(x)=f(2-x)-f(x),则g'(x)=-f'(2-x)-f'(x)=ln[1-(x-1)2],当x∈(0,1)时,g'(x)<0,g(x)在区间(0,1)内单调递减,g(x)>g(1)=0,从而f(2-x)>f(x),所以f2-1a>f1a=f1b,由(1)得2-1a<1b即2<1a+1b.①令h(x)=x+f(x),则h'(x)=1+f'(x)=1-lnx,当x∈(1,e)时,h'(x)>0,h(x)在区间(1,e)内单调递增,h(x)2.要证m+n>2⇔n>2-m⇔f(n)0,
6∴g(x)在区间(0,1)内单调递增,所以g(x)2.再证m+nm,所以n(1-lnn)+n0,故h(x)在区间(1,e)内单调递增.所以h(x)2同方法二.以下证明x1+x21,由x1(1-lnx1)=x2(1-lnx2)得x1(1-lnx1)=tx1[1-ln(tx1)],lnx1=1-tlntt-1,要证x1+x22同方法二.再证明x1+x27所以φ(x)>φ(e)=0,h'(x)>0,h(x)在区间(0,e)内单调递增.因为0x1-ex2-e.又因为f(x1)=f(x2),所以1-lnx11-lnx2=x2x1,x2x1>x1-ex2-e,即x22-ex20.因为x10恒成立,则f(x)在(0,+∞)上单调递增,当a>0时,f'(x)<0的解集为(0,a),f'(x)>0的解集为(a,+∞),即f(x)的单调递增区间为(a,+∞),单调递减区间为(0,a),所以当a≤0时,f(x)在(0,+∞)上单调递增,当a>0时,f(x)在(a,+∞)上单调递增,在(0,a)上单调递减.(2)证明因为f(x1)=f(x2)=2(x1≠x2),由(1)知,a>0,且f(x)min=f(a)=lna+1<2,解得a∈(0,e),设x1a2,即证x2>a2x1>a,即证f(x2)>fa2x1,即证f(x1)>fa2x1,设g(x)=f(x)-fa2x=2lnx+ax−xa-2lna,x∈(0,a),则g'(x)=2x−ax2−1a=-(x-a)2ax2<0,即g(x)在(0,a)上单调递减,当x→a时,g(x)→0,所以g(x)>0,即f(x)>fa2x(x∈(0,a)),则f(x1)>fa2x1成立,因此x1x2>a2成立,要证x1x20,即φ(x)在(0,e)上单调递增,当x→e时,φ(x)→e,