球的内切和外接问题ppt课件.ppt

球的内切和外接问题ppt课件.ppt

ID:60745872

大小:303.50 KB

页数:15页

时间:2020-12-13

球的内切和外接问题ppt课件.ppt_第1页
球的内切和外接问题ppt课件.ppt_第2页
球的内切和外接问题ppt课件.ppt_第3页
球的内切和外接问题ppt课件.ppt_第4页
球的内切和外接问题ppt课件.ppt_第5页
资源描述:

《球的内切和外接问题ppt课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、球与多面体的内切、外接球的半径r和正方体的棱长a有什么关系?.ra二、球与多面体的接、切定义1:若一个多面体的各顶点都在一个球的球面上, 则称这个多面体是这个球的内接多面体, 这个球是这个。定义2:若一个多面体的各面都与一个球的球面相切, 则称这个多面体是这个球的外切多面体, 这个球是这个。一、球体的体积与表面积①②多面体的外接球多面体的内切球中截面设为1球的外切正方体的棱长等于球直径。ABCDD1C1B1A1O例1甲球内切于正方体的各面,乙球内切于该正方体的各条棱, 丙球外接于该正方体,则三球表面面积之比为() A.1:2:3B.C.D

2、.ABCDD1C1B1A1O中截面正方形的对角线等于球的直径。.球内切于正方体的棱ABCDD1C1B1A1O对角面设为1球的内接正方体的对角线等于球直径。球外接于正方体练习:沿对角面截得:1、三棱锥P-ABC中,PA,PB,PC两两垂直,PA=1,,已知空间中有一个点到这四个点距离相等,求这个距离;1例2、正三棱锥的高为1,底面边长为。求棱锥的全面积和它的内切球的表面积。过侧棱AB与球心O作截面(如图)在正三棱锥中,BE是正△BCD的高,O1是正△BCD的中心,且AE为斜高解法1:O1ABEOCD作OF⊥AE于FF设内切球半径为r,则OA

3、=1-r∵Rt△AFO∽Rt△AO1EOABCD设球的半径为r,则VA-BCD=VO-ABC+VO-ABD+VO-ACD+VO-BCD解法2:例2、正三棱锥的高为1,底面边长为。求棱锥的全面积和它的内切球的表面积。注意:①割补法,②练习PAO1DEO例3求棱长为a的正四面体P–ABC的外接球的表面积过侧棱PA和球心O作截面α则α截球得大圆,截正四面体得△PAD,如图所示,G连AO延长交PD于G则OG⊥PD,且OO1=OG∵Rt△PGO∽Rt△PO1D解法1:ABCDOABCDO求正多面体外接球的半径求正方体外接球的半径解法2:球的内切、外

4、接问题5、体积分割是求内切球半径的通用做法。1、内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等。2、正多面体的内切球和外接球的球心重合。3、正棱锥的内切球和外接球球心都在高线上,但不重合。4、基本方法:构造三角形利用相似比和勾股定理。PAO1DEO2、求棱长为a的正四面体P–ABC的外接球的表面积。G1、半球内有一个内接正方体,正方体的一个面在半球的底面圆内,若正方体的边长为,求半球的表面积和体积。作业:(要抄题)第二题截图A3.C1.2.C

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。