欢迎来到天天文库
浏览记录
ID:60219297
大小:486.50 KB
页数:10页
时间:2020-12-04
《最新一元二次方程讲义.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、__________________________________________________一元二次方程复习课题一元二次方程,复习课学情分析学生已经可以掌握简单的算法,但是不扎实,强化练习。学习目标与考点分析复习一元二次方程的四种解法以及韦达定理:函数提高题学习重点难点用因式分解法、直接开平方法和公式法解简单的一元二次方程.配方法,列一元二次方程解决实际问题,并检验解的合理性学习方法例题讲解,课堂随练,归纳总结,课后反思。教学过程²知识梳理考点一、概念(1)内容:只含有一个未知数,并且未知数的最高次数是2,这样的整式
2、方程就是一元二次方程。(2)一般表达式:(3)关键点:强调对最高次项的讨论:①次数为“2”;②系数不为“0”。典型例题:例1、下列方程中是关于x的一元二次方程的是()ABCD变式:当k时,关于x的方程是一元二次方程。例2、方程是关于x的一元二次方程,则m的值为。针对练习:1、方程的一次项系数是,常数项是。2、若方程是关于x的一元二次方程,则m的取值范围是。考点二、方程的解⑴内容:使方程两边相等的未知数的值,就是方程的解。⑵应用:①利用根的概念求代数式的值;收集于网络,如有侵权请联系管理员删除_________________
3、_________________________________典型例题:例1、已知的值为2,则的值为。例2、关于x的一元二次方程的一个根为0,则a的值为。说明:任何时候,都不能忽略对一元二次方程二次项系数的限制.例3、已知关于x的一元二次方程的系数满足,则此方程必有一根为。说明:本题的关键点在于对“代数式形式”的观察,再利用特殊根“-1”巧解代数式的值。例4、已知,,,求变式:若,,则的值为。针对练习:1、已知方程的一根是2,则k为,另一根是。2、已知m是方程的一个根,则代数式。3、已知是的根,则。4、方程的一个根为()
4、AB1CD5、若。作业:1、若方程是关于x的一元一次方程,⑴求m的值;⑵写出关于x的一元一次方程。2、已知关于x的方程的一个解与方程的解相同。⑴求k的值;⑵方程的另一个解。考点三、解法⑴方法:①直接开方法;②因式分解法;③配方法;④公式法⑵关键点:降次类型一、直接开方法:※※对于,等形式均适用直接开方法典型例题:例1、解方程:=0;收集于网络,如有侵权请联系管理员删除__________________________________________________例2、若,则x的值为。针对练习:1、下列方程无解的是()A.
5、B.C.D.类型二、因式分解法:※方程特点:左边可以分解为两个一次因式的积,右边为“0”,※方程形式:如,,典型例题:例1、的根为()ABCD例2、若,则4x+y的值为。变式1:。变式2:若,则x+y的值为。变式3:若,,则x+y的值为。例3、方程的解为()A.B.C.D.例4、解方程:例5、已知,则的值为。变式:已知,且,则的值为。针对练习:1、下列说法中:①方程的二根为,,则②.收集于网络,如有侵权请联系管理员删除__________________________________________________③④⑤方
6、程可变形为正确的有()A.1个B.2个C.3个D.4个2、⑴写出一个一元二次方程,要求二次项系数不为1,且两根互为倒数:⑵写出一个一元二次方程,要求二次项系数不为1,且两根互为相反数:3、若实数x、y满足,则x+y的值为()A、-1或-2B、-1或2C、1或-2D、1或24、方程:的解是。类型三、配方法※在解方程中,多不用配方法;但常利用配方思想求解代数式的值或极值之类的问题。典型例题:例1、试用配方法说明的值恒大于0,的值恒小于0。例2、已知x、y为实数,求代数式的最小值。变式:若,则t的最大值为,最小值为。例3、已知为实
7、数,求的值。变式1:已知,则.变式2:如果,那么的值为。类型四、公式法⑴条件:⑵公式:,典型例题:例1、选择适当方法解下列方程:⑴⑵⑶⑷⑸收集于网络,如有侵权请联系管理员删除__________________________________________________说明:解一元二次方程时,首选方法是因式分解法和直接开方法、其次选用求根公式法;一般不选择配方法。考点四、根的判别式根的判别式的作用:①定根的个数;②求待定系数的值;③应用于其它。典型例题:例1、若关于的方程有两个不相等的实数根,则k的取值范围是。例2、关于
8、x的方程有实数根,则m的取值范围是()A.B.C.D.例3、已知二次三项式是一个完全平方式,试求的值.说明:若二次三项式为一个完全平方式,则其相应方程的判别式即:若,则二次三项式为完全平方式;反之,若为完全平方式,则.针对练习:1、当k时,关于x的二次三项式是完全平方式。2、已知方程有两个
此文档下载收益归作者所有