角平分线教案(2课时).doc

角平分线教案(2课时).doc

ID:59515230

大小:66.00 KB

页数:6页

时间:2020-11-04

角平分线教案(2课时).doc_第1页
角平分线教案(2课时).doc_第2页
角平分线教案(2课时).doc_第3页
角平分线教案(2课时).doc_第4页
角平分线教案(2课时).doc_第5页
资源描述:

《角平分线教案(2课时).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第一章三角形的证明4.角平分线(一)课  题1.4 角平分线(一)第1课时共2课时教  学目  标1.要求学生掌握角平分线的性质定理及其逆定理——判定定理,会用这两个定理解决一些简单问题。2.理解角平分线的性质定理和判定定理的证明。3.能够作已知角的角平分线,并会熟练地写出已知、求作和作法,可以说明为什么所作的直线是角平分线。重  点角平分线性质定理及其逆定理。难  点掌握角平分线性质定理及其逆定理并进行证明。教学方法合作探究法教学过程:一.情景导入,初步认知让学生到黑板上画出他们收集到的日常生活中应用角

2、平分线的例子,并分别说出它们的作用.【教学说明】高度评价学生的参与热情和学习成果,激励学生继续努力.尤其是对于其中很有创意的发现,可以以该学生名字命名,以此鼓励.提高学生的积极性.二.思考探究,获取新知探究1:角平分线定理已知:如图,OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为D、E.求证:PD=PE.证明:∵∠1=∠2,OP=OP,∠PDO=∠PEO=90°,∴△PDO≌△PEO(AAS).∴PD=PE(全等三角形的对应边相等).【教学说明】请同学们自己尝试着证明上述结论,然

3、后在全班进行交流.教师在教学过程中对有困难的学生要给予指导.【归纳结论】角平分线上的点到这个角两边的距离相等.探究2:角平分线的判定定理.已知:在∠AOB内部有一点P,且PD⊥OA,PE⊥OB,D、E为垂足且PD=PE.求证:点P在∠AOB的角平分线上.证明:∴PD⊥OA,PE⊥OB,∴∠PDO=∠PEO=90°.在Rt△ODP和Rt△OEP中,OP=OP,PD=PE,∴Rt△ODP≌Rt△OEP(HL定理).∴∠1=∠2(全等三角形对应角相等).∴点P在∠AOB的角平分线上.【归纳结论】在一个角的内部,

4、到角的两边距离相等的点在这个角的角平分线上.三.运用新知,深化理解1.见教材P29例12.如图,已知:∠C=90°,DE是AB的垂直平分线,D为垂足,交BC于E,AB=2AC.求证:CE=DE.证明:连结AE,由于∠C=90°,AB=2AC,∴∠B=30°,∠CAB=60°.∵DE是AB的垂直平分线,∴AE=BE,∴∠EAB=∠B=30°,∴∠CAE=60°-30°=30°,即AE是∠CAB的角平分线,∴CE=DE.3.如图,已知:E是∠AOB的平分线上的一点,且EC⊥OA,ED⊥OB,垂足分别是C、D.

5、求证:OE垂直平分CD.证明:∵OE是∠AOB的平分线,∴CE=DE,∴Rt△OCE≌Rt△ODE,∴OC=OD,∴O与E都在CD的垂直平分线上,∴OE垂直平分CD.4.如图,已知:在△ABC中,∠BAC的平分线交BC于D,且DE⊥AB,DF⊥AC,垂足分别是E、F.求证:AD是EF的垂直平分线.证明:∵AD是∠BAC的平分线,且DE⊥AB,DF⊥AC,∴DE=DF,∴Rt△ADE≌Rt△ADF,∴AE=AF,∴A与D都在EF的垂直平分线上,∴AD就是EF的垂直平分线.【教学说明】综合利用角平分线的性质和

6、判定直角三角形.垂直平分线的相关性质解决问题.进一步发展学生的推论证明能力.在学生独立完成推理过程的基础上,教师要给出书写示范.四.师生互动,课堂小结先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.五.布置作业:教材P30“习题1.9”中第2、3题.教学反思这节课证明了角平分线的性质定理和判定定理,在有角的平分线(或证明是角的平分线)时,过角平分线上的点向两边作垂线段,利用角平分线的判定或性质则使问题迅速得到解决.学生掌握较好.板书设计§1.4 角平分线(一)定理:角平分线上的点到这个

7、角两边的距离相等.(证明过程)定理:在一个角的内部,到角的两边距离相等的点在这个角的角平分线上.(证明过程)第一章三角形的证明2.角平分线(二)课  题1.2 角平分线(二)第2课时共2课时教  学目  标1.证明与角的平分线的性质定理和判定定理相关的结论.2.经历探索、猜测、证明的过程,进一步发展学生的推理证明意识和能力.体验解决问题的方法,发展实践能力和创新意识.3.在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心.重  点三角形三个内角的平分线的性质.难  点角平分线的性质定理和判定定理的

8、综合应用.教学方法合作探究法教学过程:一.情景导入,初步认知本节课继续学习有关角平分线的性质和应用,讨论三角形中的角平分线.那么,今天的这节课的研究方法和内容还是和线段的垂直平分线很类似,在学习的过程中,要注意对比线段垂直平分线的研究方法来学习.【教学说明】通过老师的说明,对这节课的大体内容和总的研究方法有了整体的认识和把握,学生可以在一个比较高的起点上来学习本节课的内容.同时,由于老师点明了线段垂直平分线和角平分线之间的相似

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。