欢迎来到天天文库
浏览记录
ID:59507705
大小:342.50 KB
页数:37页
时间:2020-09-07
《高中数学必修四说教材课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、说教材——高中数学必修四(人教版)宕昌一中付新平高中数学必修四基本结构第一章:三角函数任意角和弧度制,任意角的三角函数,三角函数的诱导公式,三角函数的图像与性质,函数的图像,三角函数的简单应用第二章:平面向量平面向量的实际背景及基本概念,平面向量的线性运算,平面向量的基本定理及坐标表示,平面向量的数量积,应用举例第三章:三角恒等变换两角和差的正余弦和正切公式,简单的三角恒等变换简单的三角恒等变换数学四第一章第二章第三章平面向量三角恒等变换任意角弧度制和三角函数定义1.1任意角和弧度制1.2任意角的三
2、角函数诱导公式,三角函数图像1.3诱导公式1.4三角函数图像性质函数图像应用1.6三角函数模型3.1两角和差弦切公式3.2简单三角恒等变换2.1平面向量背景及概念2.2线性运算2.3平面向量基本定理坐标表示2.5数量积2.5平面向量举例应用任意角的概念角的度量方法(角度制与弧度制)弧长公式与扇形面积公式任意角的三角函数同角公式诱导公式两角和与差的三角函数二倍角的三角函数三角函数式的恒等变形(化简、求值、证明)三角函数的图形和性质正弦型函数的图象已知三角函数值,求角三角部分知识网络结构三角思维常规宏观思
3、路分析差异寻找联系促进转化指角的、函数的、运算的差异利用有关公式,建立差异间关系活用公式,差异转化,矛盾统一微观直觉1、以变角为主线,注意配凑和转化;2、见切割,想化弦;个别情况弦化切;3、见和差,想化积;见乘积,化和差;4、见分式,想通分,使分母最简;5、见平方想降幂,见“1±cosα”想升幂;6、见sin2α,想拆成2sinαcosα;7、见sinα±cosα或9、见cosα·cosβ·cosθ····,先运用sinα+sinβ=pcosα+cosβ=q8、见asinα+bcosα,想化为的形式若
4、不行,则化和差10、见cosα+cos(α+β)+cos(α+2β)…,想乘想两边平方或和差化积总结:多种名称想切化弦;遇高次就降次消元;asinA+bcosA提系数转换;多角凑和差倍半可算;难的问题隐含要显现;任意变元可试特值算;求值问题缩角是关键;字母问题讨论想优先;非特殊角问题想特角算;周期问题化三个一再算;适时联想联想是关键!找出非特殊角和特殊角之间的关系,这种技巧在化简求值中经常用到,并且三角式变形有规律即坚持“四化”:多角同角化异名同名化切割弦化特值特角互化公式体系的推导:首先利用两点间的
5、距离公式推导,然后利用换元及等价转化等思想方法,以为中心推导公式体系。平面向量知识结构向量的三种表示表示运算向量加法与减法向量的相关概念实数与向量的积三角形法则平行四边形法则向量平行、垂直的条件平面向量的基本定理平面向量向量的数量积向量的应用课程标准与教材解读人教A版必修四数学教育方法的核心是学生的再创造,教师不应该把数学当做一个已经完成了的形式理论来教,不应该将各种定义、规则、算法灌输给学生,而是应该创造合适的条件,让学生在学习数学的过程中,用自己的体验,用自己的思维方式,重新创造有关的数学知识。课
6、程标准在课程目标上的新变化⑴知识领域:要求学生获得必要的基础知识、基本技能的同时要了解它们的来龙去胍,体会其中的思想方法。⑵在数学思维、解决问题的能力及培养数学意识方面,强调提倡数学地提出、分析和解决问题的能力;数学表达和交流能力;独立获得数学知识的能力;发展数学应用意识和创新意识。⑶在情感、态度、价值观等方面要求学习数学的兴趣、信心、锲而不舍的钻研精神,具有一定的数学视野,对数学有较为全面的认识,逐步形成批判性的思维习惯。新课标在课程目标的变化知识领域数学思维,能力,意识情感态度价值观文言文图示知识
7、领域返回基础知识知识技能的来龙去脉体会思维方法基本技能文言文图示数学思维能力意识返回提出问题分析问题解决问题的能力创新意识应用意识数学表达交流能力获取知识能力文言文图示情感态度价值观返回学习数学的兴趣批判性思维习惯全面的知识钻研精神数学视野1、课标要求2、课程内容加强与削弱的方面及依据3、教学建议各章课程标准及要求和建议写观察记课程标准要求和建议第一章第二章第三章课标要求课程内容加强与削弱教学建议课标要求课标要求课程内容加强与削弱课程内容加强与削弱课标要求课标要求第一章三角函数一、课标要求三角函数是基
8、本初等函数,它是描述周期现象的重要数学模型,在数学和其他领域中具有重要作用。在本模块中,学生将通过实例,逐步理解三角函数的概念及其基本性质,认识三角函数与实际生活的联系。体会三角函数在解决具有周期变化规律的问题中的作用。二、课程内容加强与削弱的方面及依据1、加强几何直观,强调数形结合思想三角函数的基础是几何中的相似形和圆,而研究方法又主要是代数的,因此三角函数集中地体现了数形结合思想,在代数和几何之间建立了初步的联系。在本章中,充分渗透了数形结合思想。一
此文档下载收益归作者所有