欢迎来到天天文库
浏览记录
ID:58994361
大小:348.00 KB
页数:5页
时间:2020-09-16
《中考函数动点问题和点的存在性.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、BOAPM1如图,在平面直角坐标系中,已知点坐标为(2,4),直线与轴相交于点,连结,抛物线从点沿方向平移,与直线交于点,顶点到点时停止移动.(1)求线段所在直线的函数解析式;(2)设抛物线顶点的横坐标为,①用的代数式表示点的坐标;②当为何值时,线段最短;(3)当线段最短时,相应的抛物线上是否存在点,使△的面积与△的面积相等,若存在,请求出点的坐标;若不存在,请说明理由.2如图所示,已知二次函数图象的顶点坐标为C(1,1),直线,y=kx+m的图象与该二次函数的图象交于A,B两点,其中,点A坐标为(,),点B在Y轴上,直线与x轴的交点为F,P为
2、线段AB上的一个动点(点P与A、B不重合),过P作X轴的垂线与这个二次函数的图象交于E点.(1)求k、m的值及这个二次函数的解析式;(2)设线段PE的长为h,点P的横坐标为x,求h与x之间的函数关系,并写出自变量x的取值范围;(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在点p,使得以点P、E、D为顶点的三角形与△BOF相似?若存在,请求出P点的坐标;若不存在,请说明理由.3已知:抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB、OC的长(OB3、是方程x2-10x+16=0的两个根,且抛物线的对称轴是直线x=-2.(1)求A、B、C三点的坐标;(2)求此抛物线的表达式;(3)求△ABC的面积;(4)若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;(5)在(4)的基础上试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.4.已知,如图抛物线y=ax2+3ax+c(a>0)与y轴交于C点,与x4、轴交于A、B两点,A点在B点左侧,点B的坐标为(1,0),OC=3OB.(1)求抛物线的解析式;(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;(3)若点E在x轴上,点P在抛物线上,是否存在以A、C、E、P为顶点且以AC为一边的平行四边形?若存在,求点P的坐标;若不存在,请说明理由。6.如图,已知,以点为圆心,以长为半径的圆交轴于另一点,过点作交于点,直线交轴于点.(1)求证:直线是的切线;(2)求点的坐标及直线的解析式;xyABCOFE(3)有一个半径与的半径相等,且圆心在轴上运动的.若与直线相交于两点,是否存在这样的5、点,使是直角三角形.若存在,求出点的坐标;若不存在,请说明理由.7.已知抛物线经过及原点.(1)求抛物线的解析式.(2)过点作平行于轴的直线交轴于点,在抛物线对称轴右侧且位于直线下方的抛物线上,任取一点,过点作直线平行于轴交轴于点,交直线于点,直线与直线及两坐标轴围成矩形(如图).是否存在点,使得与相似?若存在,求出点的坐标;若不存在,请说明理由.EAQBPCOyx(3)如果符合(2)中的点在轴的上方,连结,矩形内的四个三角形之间存在怎样的关系?为什么?1.已知抛物线()与轴相交于点,顶点为.直线分别与轴,轴相交于两点,并且与直线相交于点.(16、)填空:试用含的代数式分别表示点与的坐标,则;(2)如图,将沿轴翻折,若点的对应点′恰好落在抛物线上,′与轴交于点,连结,求的值和四边形的面积;(3)在抛物线()上是否存在一点,使得以为顶点的四边形是平行四边形?若存在,求出点的坐标;若不存在,试说明理由.3.如图,已知点A的坐标是(-1,0),点B的坐标是(9,0),以AB为直径作⊙O′,交y轴的负半轴于点C,连接AC、BC,过A、B、C三点作抛物线.(1)求抛物线的解析式;(2)点E是AC延长线上一点,∠BCE的平分线CD交⊙O′于点D,连结BD,求直线BD的解析式;(3)在(2)的条件下,7、抛物线上是否存在点P,使得∠PDB=∠CBD?如果存在,请求出点P的坐标;如果不存在,请说明理由.2.如图,抛物线与轴交于两点,与轴交于C点,且经过点,对称轴是直线,顶点是.(1)求抛物线对应的函数表达式;OBxyAMC1(第25题图)(2)经过两点作直线与轴交于点,在抛物线上是否存在这样的点,使以点为顶点的四边形为平行四边形?若存在,请求出点的坐标;若不存在,请说明理由;(3)设直线与y轴的交点是,在线段上任取一点(不与重合),经过三点的圆交直线于点,试判断的形状,并说明理由;(4)当是直线上任意一点时,(3)中的结论是否成立?(请直接写出结8、论).
3、是方程x2-10x+16=0的两个根,且抛物线的对称轴是直线x=-2.(1)求A、B、C三点的坐标;(2)求此抛物线的表达式;(3)求△ABC的面积;(4)若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;(5)在(4)的基础上试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.4.已知,如图抛物线y=ax2+3ax+c(a>0)与y轴交于C点,与x
4、轴交于A、B两点,A点在B点左侧,点B的坐标为(1,0),OC=3OB.(1)求抛物线的解析式;(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值;(3)若点E在x轴上,点P在抛物线上,是否存在以A、C、E、P为顶点且以AC为一边的平行四边形?若存在,求点P的坐标;若不存在,请说明理由。6.如图,已知,以点为圆心,以长为半径的圆交轴于另一点,过点作交于点,直线交轴于点.(1)求证:直线是的切线;(2)求点的坐标及直线的解析式;xyABCOFE(3)有一个半径与的半径相等,且圆心在轴上运动的.若与直线相交于两点,是否存在这样的
5、点,使是直角三角形.若存在,求出点的坐标;若不存在,请说明理由.7.已知抛物线经过及原点.(1)求抛物线的解析式.(2)过点作平行于轴的直线交轴于点,在抛物线对称轴右侧且位于直线下方的抛物线上,任取一点,过点作直线平行于轴交轴于点,交直线于点,直线与直线及两坐标轴围成矩形(如图).是否存在点,使得与相似?若存在,求出点的坐标;若不存在,请说明理由.EAQBPCOyx(3)如果符合(2)中的点在轴的上方,连结,矩形内的四个三角形之间存在怎样的关系?为什么?1.已知抛物线()与轴相交于点,顶点为.直线分别与轴,轴相交于两点,并且与直线相交于点.(1
6、)填空:试用含的代数式分别表示点与的坐标,则;(2)如图,将沿轴翻折,若点的对应点′恰好落在抛物线上,′与轴交于点,连结,求的值和四边形的面积;(3)在抛物线()上是否存在一点,使得以为顶点的四边形是平行四边形?若存在,求出点的坐标;若不存在,试说明理由.3.如图,已知点A的坐标是(-1,0),点B的坐标是(9,0),以AB为直径作⊙O′,交y轴的负半轴于点C,连接AC、BC,过A、B、C三点作抛物线.(1)求抛物线的解析式;(2)点E是AC延长线上一点,∠BCE的平分线CD交⊙O′于点D,连结BD,求直线BD的解析式;(3)在(2)的条件下,
7、抛物线上是否存在点P,使得∠PDB=∠CBD?如果存在,请求出点P的坐标;如果不存在,请说明理由.2.如图,抛物线与轴交于两点,与轴交于C点,且经过点,对称轴是直线,顶点是.(1)求抛物线对应的函数表达式;OBxyAMC1(第25题图)(2)经过两点作直线与轴交于点,在抛物线上是否存在这样的点,使以点为顶点的四边形为平行四边形?若存在,请求出点的坐标;若不存在,请说明理由;(3)设直线与y轴的交点是,在线段上任取一点(不与重合),经过三点的圆交直线于点,试判断的形状,并说明理由;(4)当是直线上任意一点时,(3)中的结论是否成立?(请直接写出结
8、论).
此文档下载收益归作者所有