欢迎来到天天文库
浏览记录
ID:58968895
大小:1.31 MB
页数:14页
时间:2020-10-27
《中考数学二轮复习专题测试.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、四边形一.选择题(每题3分,共30分)1.如图,在□ABCD中,已知AD=8㎝,AB=6㎝,DE平分∠ADC交BC边于点E,则BE等于()(A)2cm(B)4cm(C)6cm(D)8cmABCD(第1题图)E2.如图,在四边形ABCD中,E是BC边的中点,连结DE并延长,交AB的延长线于F点,.添加一个条件,使四边形ABCD是平行四边形.你认为下面四个条件中可选择的是( )A.B.C.D.EBAFCD3.如图,沿虚线将剪开,则得到的四边形是()A.梯形B.平行四边形C.矩形D.菱形DCFBA(第3题图)E4.下列命题中正确的是()A.矩形的对角线相互
2、垂直B.菱形的对角线相等C.平行四边形是轴对称图形D.等腰梯形的对角线相等5.如图,矩形的两条对角线相交于点,,则矩形的对角线的长是()A.2B.4C.D.ODCAB第5题6.如图,要使成为矩形,需添加的条件是()A.B.C.D.12BCDAO(第6题)7.如图,在菱形ABCD中,∠A=110°,E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠FPC=()A.35°B.45°C.50°D.55°8如图,在梯形ABCD中,AB//DC,∠D=90o,AD=DC=4,AB=1,F为AD的中点,则点F到BC的距离是()A.2B.4C.8D.19.在矩形
3、中,平分,过点作于,延长交于点,下列结论中:;;;④,正确的是()A.②③B.③④C.①②④D.②③④DABCOEFH第9题图10.如图,在矩形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D作匀速运动,那么△ABP的面积S与点P运动的路程之间的函数图象大致是()。A.B.C.D.二.填空题(每题3分,共30分)1.如图3,正方形的边长为4cm,则图中阴影部分的面积为cm2.(图3)ABCD2.如图,将矩形ABCD沿BE折叠,若∠CBA′=30°则∠BEA′=_____.3.如图,一活动菱形衣架中,菱形的边长均为若墙上钉子间的距离则度
4、.1(第3题)ABC4.若正六边形的边长为2,则此正六边形的边心距为.5.如图,l∥m,矩形ABCD的顶点B在直线m上,则∠α=度.(第5题)6.矩形内有一点P到各边的距离分别为1、3、5、7,则该矩形的最大面积为平方单位.7.如果用4个相同的长为3宽为1的长方形,拼成一个大的长方形,那么这个大的长方形的周长可以是______________。8.如图,在菱形中,,、分别是、的中点,若,则菱形的边长是U_____________U.EFDBCA(第8题)9.如图,已知是梯形的中位线,的面积为,则梯形的面积为cm2.ADEBCF(第9题)10.如图,将两
5、张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是.(第10题图)三.解答题1.(本题5分)在梯形ABCD中,AB∥CD,∠A=90°,AB=2,BC=3,CD=1,E是AD中点.求证:CE⊥BE.ACBDE2.(本题8分)如图:已知在中,,为边的中点,过点作,垂足分别为.(1)求证:;(2)若,求证:四边形是正方形.(第2题)DCBEAF3.(本题满分5分)如图,在梯形中,,,,,,求的长.ABCD4.(本题满分8分)如图11所示,在中,将绕点顺时针方向旋转得到点在上,再将沿着
6、所在直线翻转得到连接(1)求证:四边形是菱形;(2)连接并延长交于连接请问:四边形是什么特殊平行四边形?为什么?ADFCEGB图115.(本题5分)如图,ABCD为平行四边形,AD=a,BE∥AC,DE交AC的延长线于F点,交BE于E点.(1)求证:DF=FE;(2)若AC=2CF,∠ADC=60o,AC⊥DC,求BE的长;(3)在(2)的条件下,求四边形ABED的面积.6.(本小题满分8分)如图,在梯形中,,,,于点E,F是CD的中点,DG是梯形的高.(1)求证:四边形AEFD是平行四边形;(2)设,四边形DEGF的面积为y,求y关于x的函数关系式.
7、7.(本题满分10分)已知:在梯形ABCD中,AD∥BC,AB=DC,E、F分别是AB和BC边上的点.(1)如图①,以EF为对称轴翻折梯形ABCD,使点B与点D重合,且DF⊥BC.若AD=4,BC=8,求梯形ABCD的面积的值;(2)如图②,连接EF并延长与DC的延长线交于点G,如果FG=k·EF(k为正数),试猜想BE与CG有何数量关系?写出你的结论并证明之.8.(本题满分11分)如图(1),已知正方形ABCD在直线MN的上方,BC在直线MN上,E是BC上一点,以AE为边在直线MN的上方作正方形AEFG.(1)连接GD,求证:△ADG≌△ABE;(4
8、分)(2)连接FC,观察并猜测∠FCN的度数,并说明理由;(4分)(3)如图(2),将图(1)
此文档下载收益归作者所有