欢迎来到天天文库
浏览记录
ID:58863201
大小:744.50 KB
页数:15页
时间:2020-09-22
《基于随机提前期的库存模型的规划周期.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、随机提前期库存模型的规划周期摘要:相关的规划周期的文献都大量地致力于分析具有确定提前期的库存系统。我们证明了,在某种情况下,相关的规划周期理论也适用于具有随机提前期的情况。特别的,当生产需求被认为是不可替换的以及确定的,这时生产运作只能被设置成符合这种特殊要求的并且也只适合于满足这种要求的情况。当持有订单、退订单、下订单时,在可变生产成本不变,并且销售提前期不变的情况下,按照一系列连续的整体的生产要求进行生产时总是最优的策略。特定发货量的生产日期具有凸性性质。基于以上的结论,我们证明了一些规划周期理论。并给出了
2、远期的动态规划递归方法。这些结论被归纳为基本动态订购数量模型。我们呈现了几个案例用以阐述最优策略对提前期变化的灵敏度。对于动态订购数量问题的规划周期的探索具有远远超越计算存储方法的优势。在许多情况下,对于下一个最佳生产决策的判断是最重要的,因为这些事项常常需要定期得到解决以纳入改善后的信息。这将导致在有限时间内的周期问题的自然停止法则,并随后降低获取和探索信息的成本。Lundin和Morton二人近来集成了规划周期的相关文献,将它们作为一个整体进行研究。至目前为止,这项研究已经致力于分析具有确定提前期的库存系统
3、。这篇文章的主要目的是证明在某些假设下一些周期规划的理论和概念也可以被归纳为随机提前期的情况。Gross和Soriano以及Vinson的研究清楚地证明了提前期变动对库存成本有重大影响。然而文献间也存在差异,部分是由于连续提前期和随机提前期对库存系统的影响的根本区别。当提前期是连续的,所有的订单都将按照事先设置的顺序先后到达。当提前期是独立的随机变量,一种可能性是订单呈现时间上的交叉,也就是说在时间点2的订货可能先于时间点1的订货到达。然而,在一个真正的商业环境下,订单通常不会交叉,而且很容易证明,在许多情况下
4、提前期并不是严格独立的或者独立于形成需求的过程。这些问题在Hadley和Whitin,Vinson的研究中得到了更深层的探讨。这种困境引发了库存理论的各种响应,我们现在只是简略的回顾。(完整的探讨,请见Liberatore)1文献回顾一些研究者试图概括可用于定期审查的有限时间范围内的随机提前期模型的函数方程。Bulinskaya提出N阶段和无限阶段的库存模型,这时提前期是发生在0或者1的一个随机变量。Scarf解决了当交货期是时间长度并联的离散随机变量的动态问题。为了达到数学上易处理的效果,Scarf要求至多有
5、一个未付订单。这个限制允许当且仅当不存在未付订单的情况下设置一种顺序。为了避免伴随这种模型方法的计算困难,Wright要求随着时间的推移需求分布是固定的,并且固定订货成本为0。Morse的经典结论是已经分析解决的特殊情形(泊松需求,指数间隔次数),即当提前期是随机的和相互独立的随机变量,并且允许订单交叉时的情形。与此形成对立的是,Kaplan认为订单是不允许交叉的并且可能的情形是:未完成订单的交付是独立于未付订单的数量和大小的。订单的到达只依赖于订单被安排的时间。Hadley和Whitin研究了随机提前期对大范
6、围的连续定期审查库存策略的影响。他们认为,订单间的时间间隔通常是足够长的,以致订单间不存在相互影响。因此他们提出提前期是随机独立的,同时订单间不会出现交叉现象(或者说交叉的可能性小到可以忽略)。最后,Washburn开发了一个无限范围的库存模型,在这个模型中,需求在单位时间内是一个常数U。为了避免出现交叉的问题,Washburn假设(和我们一样)提前期是随机独立的,但需求是不可改变的。每一单位的需求被认为是一个“特殊的订单”。因此是否出现订单交叉是无关紧要的。事实上,如果需求是可替换的,错误就会随着订单交叉现象
7、的出现而出现,正如Hadley-Whitin的方法。2单生产点模型取c1和c2为存货成本和退货成本,表示为美元/单位/时间,K作为每单位产量运行的固定成本。Di作为时刻ηi的需求产量,i=1,……P。注意我们不要求所有的i都取常数。定义g(t)为提前期的概率质量函数或概率密度函数。分布函数为G(x),对于tmin0,其他情况取0。由于需求被认为是不可改变的,生产量必须按照特殊需求进行设置,并且仅能用于满足这些需求。当一项任务被确定下来,我们需要及时定位生产的时间点以最小化库存成本的预期
8、值。我们先来考虑后面的问题。将EIC(T;l;m)定义为预期的库存成本,它的值是通过联合T时刻的生产需求Dl,……,Dm得出。由此我们得到定理2.1:EIC(T;l;m)是一个凸函数,最优生产点(称为T※(l;m))满足证明:对(1)进行两次约分得到,这是一个非负函数,因为g(ηi-T)是非负的。因此,EIC(T;l;m)是一个凸函数。让一阶导数为0,间接得到(2)式。注意:当l=m,
此文档下载收益归作者所有