第1课时-利用“边边边”判定三角形全等演示教学.pptx

第1课时-利用“边边边”判定三角形全等演示教学.pptx

ID:58849237

大小:1.38 MB

页数:29页

时间:2020-09-30

第1课时-利用“边边边”判定三角形全等演示教学.pptx_第1页
第1课时-利用“边边边”判定三角形全等演示教学.pptx_第2页
第1课时-利用“边边边”判定三角形全等演示教学.pptx_第3页
第1课时-利用“边边边”判定三角形全等演示教学.pptx_第4页
第1课时-利用“边边边”判定三角形全等演示教学.pptx_第5页
资源描述:

《第1课时-利用“边边边”判定三角形全等演示教学.pptx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、3探索三角形全等的条件导入新课讲授新课当堂练习课堂小结七年级数学下(BS)教学课件第四章三角形第1课时利用“边边边”判定三角形全等1.了解三角形的稳定性,掌握三角形全等的“SSS”判定,并能应用它判定两个三角形是否全等;(重点)2.由探索三角形全等条件的过程,体会由操作、归纳获得数学结论的过程.(难点)学习目标如果只满足这些条件中的一部分,那么能保证△ABC≌△DEF吗?想一想:即:三条边分别相等,三个角分别相等的两个三角形全等.探究活动1:一个条件可以吗?(1)有一条边相等的两个三角形不一定全等(2

2、)有一个角相等的两个三角形不一定全等结论:有一个条件相等不能保证两个三角形全等.三角形全等的判定(“边边边”)一讲授新课6cm300有两个条件对应相等不能保证三角形全等.60o300不一定全等探究活动2:两个条件可以吗?3cm4cm不一定全等30060o3cm4cm不一定全等30o6cm结论:(1)有两个角对应相等的两个三角形(2)有两条边对应相等的两个三角形(3)有一个角和一条边对应相等的两个三角形结论:三个内角对应相等的三角形不一定全等.(1)有三个角对应相等的两个三角形60o30030060o9

3、0o90o探究活动3:三个条件可以吗?3cm4cm6cm4cm6cm3cm6cm4cm3cm(2)三边对应相等的两个三角形会全等吗?先任意画出一个△ABC,再画出一个△A′B′C′,使A′B′=AB,B′C′=BC,A′C′=AC.把画好的△A′B′C′剪下,放到△ABC上,他们全等吗?ABCA′B′C′想一想:作图的结果反映了什么规律?你能用文字语言和符号语言概括吗?作法:(1)画B′C′=BC;(2)分别以B',C'为圆心,线段AB,AC长为半径画圆,两弧相交于点A';(3)连接线段A'B',A'

4、C'.动手试一试文字语言:三边对应相等的两个三角形全等.(简写为“边边边”或“SSS”)知识要点“边边边”判定方法ABCDEF在△ABC和△DEF中,∴△ABC≌△DEF(SSS).AB=DE,BC=EF,CA=FD,几何语言:例1如图,有一个三角形钢架,AB=AC,AD是连接点A与BC中点D的支架.是说明:(1)△ABD≌△ACD.CBDA典例精析解题思路:先找隐含条件公共边AD再找现有条件AB=AC最后找准备条件BD=CDD是BC的中点证明:∵D是BC中点,∴BD=DC.在△ABD与△ACD中,∴

5、△ABD≌△ACD(SSS).CBDAAB=AC(已知)BD=CD(已证)AD=AD(公共边)准备条件指明范围摆齐根据写出结论(2)∠BAD=∠CAD.由(1)得△ABD≌△ACD,∴∠BAD=∠CAD.(全等三角形对应角相等)如图,C是BF的中点,AB=DC,AC=DF.试说明:△ABC≌△DCF.在△ABC和△DCF中,AB=DC,∴△ABC≌△DCF(已知)(已证)AC=DF,BC=CF,解:∵C是BF中点,∴BC=CF.(已知)(SSS).针对训练已知:如图,点B、E、C、F在同一直线上,AB

6、=DE,AC=DF,BE=CF.试说明:(1)△ABC≌△DEF;(2)∠A=∠D.解:∴△ABC≌△DEF(SSS).在△ABC和△DEF中,AB=DE,AC=DF,BC=EF,(已知)(已知)(已证)∵BE=CF,∴BC=EF.∴BE+EC=CF+CE,(1)(2)∵△ABC≌△DEF(已证),∴∠A=∠D(全等三角形对应角相等).E变式题ACBD解:∵D是BC的中点,∴BD=CD.在△ABD与△ACD中,AB=AC(已知),BD=CD(已证),AD=AD(公共边),∴△ABD≌△ACD(SSS)

7、,例2如图,△ABC是一个钢架,AB=AC,AD是连接A与BC中点D的支架,试说明:∠B=∠C.∴∠B=∠C.典例精析动手做一做1.将三根木条用钉子钉成一个三角形木架.2.将四根木条用钉子钉成一个四边形木架.三角形的稳定性二洋葱微视频(单击)请同学们看看:三角形和四边形的模型,扭一扭模型,它们的形状会改变吗?动动手不会会1.三角形具有稳定性.2.四边形没有稳定性.发现理解“稳定性”“只要三角形三条边的长度固定,这个三角形的形状和大小也就完全确定,三角形的这种性质叫做“三角形的稳定性”.这就是说,三角形

8、的稳定性不是“拉得动、拉不动”的问题,其实质应是“三角形边长确定,其形状和大小就确定了”.比一比,谁知道的多你能举出一些现实生活中的应用了三角形稳定性的例子吗?△ABC≌(SSS).(1)如图,AB=CD,AC=BD,△ABC和△DCB是否全等?试说明理由.解:△ABC≌△DCB.理由如下:AB=CD,AC=BD,=(2)如图,D、F是线段BC上的两点,AB=CE,AF=DE,要使△ABF≌△ECD,还需要条件_________________.当堂练习

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。