2、命题结论正确例如: 求证两直线平行。用反证法证明时①假设这两直线不平行;②从这个假设出发,经过推理论证,得出矛盾;③从而肯定,非平行不可。二、例题例1两直线被第三条直线所截,如果同位角相等,那么这两直线平行 已知:如图∠1=∠2 A 1 B 求证:AB∥CD 证明:设AB与CD不平行 C 2 D 那么它们必相交,设交点为M D 这时,∠1是△GHM的外角 A 1 M B ∴
3、∠1>∠2 G 这与已知条件相矛盾 2 ∴AB与CD不平行的假设不能成立 H ∴AB∥CD C例2.求证两条直线相交只有一个交点证明:假设两条直线相交有两个交点,那么这两条直线都经过相同的两个点,这与“经过两点有且只有一条直线”的直线公理相矛盾,所以假设不能成立,因此两条直线相交只有一个交点。 (从以上两例看出,证明中的三个步骤,最关键的是第二步——推出矛盾。但有的题目,第一步“反设”也要认真对待)。例3.已知:m2是3的倍数,求证:m也是3的倍