欢迎来到天天文库
浏览记录
ID:57368370
大小:360.85 KB
页数:9页
时间:2020-08-12
《高中数学竞赛系列讲座.pdf》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、高中数学竞赛系列讲座第四讲指数函数与对数函数指数、对数以及指数函数与对数函数,是高中代数非常重要的内容。无论在高考及数学竞赛中,都具有重要地位。熟练掌握指数对数概念及其运算性质,熟练掌握指数函数与对数函数这一对反函数的性质、图象及其相互关系,对学习好高中函数知识,意义重大。一、指数概念与对数概念:指数的概念是由乘方概念推广而来的。相同因数相乘a·a……a(n个)=an导出乘方,这里的n为正整数。从初中开始,首先将n推广为全体整数;然后把乘方、开方统一起来,推广为有理指数;最后,在实数范围内建立起指数概念。欧拉指出:“对数源出于指数”。一般地,如
2、果a(a>0,a≠1)的b次幂等于N,就是ab=N,那么数b叫做以a为底N的对数,记作:logaN=b其中a叫做对数的底数,N叫做真数。ab=N与b=logaN是一对等价的式子,这里a是给定的不等于1的正常数。当给出b求N时,是指数运算,当给出N求b时,是对数运算。指数运算与对数运算互逆的运算。二、指数运算与对数运算的性质1.指数运算性质主要有3条:ax·ay=ax+y,(ax)y=axy,(ab)x=ax·bx(a>0,a≠1,b>0,b≠1)2.对数运算法则(性质)也有3条:(1)loga(MN)=logaM+logaN(2)logaM/N
3、=logaM-logaN(3)logaMn=nlogaM(n∈R)(a>0,a≠1,M>0,N>0)3.指数运算与对数运算的关系:X=alogax;mlogan=nlogam4.负数和零没有对数;1的对数是零,即loga1=0;底的对数是1,即logaa=15.对数换底公式及其推论:换底公式:logaN=logbN/logba推论1:logamNn=(n/m)logaN推论2:三、指数函数与对数函数函数y=ax(a>0,且a≠1)叫做指数函数。它的基本情况是:(1)定义域为全体实数(-∞,+∞)(2)值域为正实数(0,+∞),从而函数没有最大值
4、与最小值,有下界,y>0(3)对应关系为一一映射,从而存在反函数--对数函数。(4)单调性是:当a>1时为增函数;当00,a≠1),f(x+y)=f(x)·f(y),f(x-y)=f(x)/f(y)函数y=logax(a>0,且a≠1)叫做对数函数,它的基本情况是:(1)定义
5、域为正实数(0,+∞)(2)值域为全体实数(-∞,+∞)(3)对应关系为一一映射,因而有反函数——指数函数。(4)单调性是:当a>1时是增函数,当00,a≠1),f(x·y)=f(x)+f(y),f(x/y)=f(x)-f(y)例1.若f(x)=(ax/(ax+√a)),求f(
6、1/1001)+f(2/1001)+f(3/1001)+…+f(1000/1001)分析:和式中共有1000项,显然逐项相加是不可取的。需找出f(x)的结构特征,发现规律,注意到1/1001+1000/1001=2/1001+999/1001=3/1001+998/1001=…=1,而f(x)+f(1-x)=(ax/(ax+√a))+(a1-x/(a1-x+√a))=(ax/(ax+√a))+(a/(a+ax·√a))=(ax/(ax+√a))+((√a)/(ax+√a))=((ax+√a)/(ax+√a))=1规律找到了,这启示我们将和式配对
7、结合后再相加:原式=[f(1/1001)+f(1000/1001)]+[f(2/1001)+f(999/1001)]+…+[f(500/1001)+f(501/1001)]=(1+1+…+1)5000个=500说明:观察比较,发现规律f(x)+f(1-x)=1是本例突破口。(1)取a=4就是1986年的高中数学联赛填空题:设f(x)=(4x/(4x+2)),那么和式f(1/1001)+f(2/1001)+f(3/1001)+…+f(1000/1001)的值=。(2)上题中取a=9,则f(x)=(9x/(9x+3)),和式值不变也可改变和式为求f
8、(1/n)+f(2/n)+f(3/n)+…+f((n-1)/n).(3)设f(x)=(1/(2x+√2)),利用课本中推导等差数列前n项和的方法,可求
此文档下载收益归作者所有