高中数学竞赛系列讲座01

高中数学竞赛系列讲座01

ID:42660059

大小:84.00 KB

页数:11页

时间:2019-09-19

高中数学竞赛系列讲座01_第1页
高中数学竞赛系列讲座01_第2页
高中数学竞赛系列讲座01_第3页
高中数学竞赛系列讲座01_第4页
高中数学竞赛系列讲座01_第5页
资源描述:

《高中数学竞赛系列讲座01》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、高中数学竞赛系列讲座第一讲 集合与容斥原理  数学是一门非常迷人的学科,久远的历史,勃勃的生机使她发展成为一棵枝叶茂盛的参天大树,人们不禁要问:这根大树到底扎根于何处?为了回答这个问题,在19世纪末,德国数学家康托系统地描绘了一个能够为全部数学提供基础的通用数学框架,他创立的这个学科一直是我们数学发展的根植地,这个学科就叫做集合论。它的概念与方法已经有效地渗透到所有的现代数学。可以认为,数学的所有内容都是在“集合”中讨论、生长的。  集合是一种基本数学语言、一种基本数学工具。它不仅是高中数学的第一课,而且是整个数学的基础。对集合

2、的理解和掌握不能仅仅停留在高中数学起始课的水平上,而要随着数学学习的进程而不断深化,自觉使用集合语言(术语与符号)来表示各种数学名词,主动使用集合工具来表示各种数量关系。如用集合表示空间的线面及其关系,表示平面轨迹及其关系、表示方程(组)或不等式(组)的解、表示充要条件,描述排列组合,用集合的性质进行组合计数等。  一、学习集合要抓住元素这个关键。  遇到集合问题,首先要弄请:集合里的元素是什么。  集合学习中,新名词新概念多。如集合、元素、有限集、无限集、列举法、描述法、子集、真子集、空集、非空集合、全集、补集、交集、并集等。

3、新关系新符号多,如属于、不属于、包含、包含于、真包含、真包含于、相等、不相等、相交、相并、互补(∈、、、、N、N※、Z、Q、R、∩、∪、CsA、I、=、≠……)等,这些新概念新关系,多而抽象。在这千头万绪中,应该抓住“元素”这个关键,因为集合是由元素确定的,“子、全、补、交、并、空”等集合也都是通过元素来定义的。集合中元素的特征即“确定性”,“互异性”、“无序性”也就是元素的性质。集合的分类(有限集与无限集)与表示方法(列举法与描述法)也是通过元素来刻画的。元素是集合的基本内核,研究集合,首先就要确定集合里的元素是什么。  例1

4、.设A={X∣X=a2+b2,a、b∈Z},X1,X2∈A,求证:X1×X2∈A。  分析:A中的元素是什么?是自然数,即由两个整数a、b的平方和构成的自然数,亦即从0、1、4、9、16、25……,n2,……中任取两个(相同或不相同)数加起来得到的一个和数,本题要证明的是:两个这样的数的乘积一定还可以拆成两个自然数的平方和的形式,即(a2+b2)(c2+d2)=(X)2+(Y)2,X,Y∈Z  证明:设X1=a2+b2,X2=c2+d2,a、b、c、d∈Z  则X1×X2=(a2+b2)(c2+d2)     =a2c2+b2d

5、2+b2c2+a2d2     =a2c2+2ac·bd+b2d2+b2c2-2bc·ad+a2d2     =(ac+bd)2+(bc-ad)2  又a、b、c、d∈Z,故ac+bd、bc-ad∈Z,从而X1X2∈A  说明:本题的证明中根据A中元素的结构特点使用了配方法和“零”变换(0=2abcd-2abcd)。命题的结论说明集合A对于其中元素的“·”运算是封闭的。类似的有:  自然数集合N对于“+”、“×”运算是封闭的  整数集合Z对于“+”、“-”、“×”运算是封闭的  有理数集合Q对于“+”、“-”、“×”、“÷”运算

6、是封闭的(除数不能是零)  实数集合对于“+”、“-”、“×”、“÷”四则运算是封闭的  复数集合对于“+”、“-”、“×”、“÷”、乘方、开方运算都是封闭的。  例2.已知集合M={直线},N={抛物线},则M∩N中元素的个数为()     (A)0    (B)0,1,2其中之一     (C)无穷  (D)无法确定  [分析]M中的元素为直线,是无限集;N中的元素为抛物线,它也是无限集。由于两集合中的元素完全不同,即既是直线又是抛物线(曲线)的图形根本不存在,故M∩N=φ,选(A)  [说明]若想当然地误认为M中的元素是直

7、线上的点,N中的元素是抛物线上的点,当误认为是判断直线与抛物线的位置关系即相交,相切、相离时,会选(B);  例3.已知  A={Y

8、Y=X2-4X+3,X∈R},  B={Y∣Y=-X2-2X+2,X∈R}求A∩B  先看下面的解法:  解:联立方程组    Y=X2-4X+3   ①    Y=-X2-2X+2  ②①-②消去Y,得    2X2-2X+1=0    ③  因为Δ=(-2)2-4×2×1=-4<0,方程③无实根,故A∩B=φ  [说明]上述解法对吗?画出两抛物线的图象:Y=X2-4X+3=(X-1)(X-3)

9、,开口向上,与X轴交于(1,0)、(3,0),对称轴为X=2,纵截距为3;Y=-X2-2X+2=-(X+1)2+3,开口向下,与X轴交于(-1-√3,0)、(-1+√3,0),对称轴为X=-1,观察可知,它们确实没有交点,但这解答对吗,亲爱的读者?图1-1-1 

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。