资源描述:
《三角形全等的判定复习说课讲解.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、三角形全等的条件——复习课宝坪初中数学备课组前面的知识你忘记了吗?让我们一起来复习一下吧例题1已知:如图∠B=∠DEF,BC=EF,补充条件求证:ΔABC≌ΔDEFDEFABC(1)若要以“SAS”为依据,还缺条件_____;AB=DE(2)若要以“ASA”为依据,还缺条件____;∠ACB=∠DFE(3)若要以“AAS”为依据,还缺条件_____∠A=∠D(4)若要以“SSS”为依据,还缺条件___AB=DEAC=DF(5)若∠B=∠DEF=90°要以“HL”为依据,还缺条件_____AC=D
2、F例2、如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是拿()去配.证明题的分析思路:①要证什么②已有什么③还缺什么④创造条件注意1、证明两个三角形全等,要结合题目的条件和结论,选择恰当的判定方法2、全等三角形,是证明两条线段或两个角相等的重要方法之一,证明时①要观察待证的线段或角,在哪两个可能全等的三角形中。②有公共边的,公共边一定是对应边,有公共角的,公共角一定是对应角,有对顶角,对顶角也是对应角总之,证明过程中能用简单方法的就不要绕弯路。
3、==__ABCDP例3已知:如图,P是BD上的任意一点AB=CB,AD=CD.求证:PA=PC①要证明PA=PC可将其放在ΔAPB和ΔCPB或ΔAPD和ΔCPD考虑②已有两条边对应相等(其中一条是公共边)③还缺一组夹角对应相等若能使∠ABP=∠CBP或∠ADP=∠CDP即可。创造条件分析:==__ABCDP例3已知:P是BD上的任意一点AB=CB,AD=CD.求证PA=PC证明:在△ABD和△CBD中AB=CBAD=CDBD=BD∴△ABD≌△CBD(SSS)∴∠ABD=∠CBD在△ABP和△C
4、BP中AB=BC∠ABP=∠CBPBP=BP∴△ABP≌△CBP(SAS)∴PA=PC例4已知:ABC的顶点和DBC的顶点A和D在BC的同旁,AB=DC,AC=DB,AC和DB相交于点O.求证:OA=OD.证明:在△ABC和△DCB中,∴∠A=∠D(全等三角形的对应角相等).AB=DC(已知),AC=DB(已知),BC=CB(公共边),∴△ABC≌△DCB(SSS)在△AOB和△DOC中,∠AOB=∠DOC(对顶角)∠A=∠D(已证)AB=DC(已知)∴△AOB≌△DOC(AAS)∴OA=O
5、D.例5.已知:如图AB=AE,∠B=∠E,BC=EDAF⊥CD求证:点F是CD的中点分析:要证CF=DF可以考虑CF、DF所在的两个三角形全等,为此可添加辅助线构建三角形全等,如何添加辅助线呢?已有AB=AE,∠B=∠E,BC=ED怎样构建三角形能得到两个三角形全等呢?连结AC,AD添加辅助线是几何证明中很重要的一种思路证明:连结AC和AD∵在△ABC和△AED中,AB=AE,∠B=∠E,BC=ED∴△ABC≌△AED(SAS)∴AC=AD(全等三角形的对应边相等)∵AF⊥CD∴∠AFC=∠A
6、FD=90°,在Rt△AFC和Rt△AFD中AC=AD(已证)AF=AF(公共边)∴Rt△AFC≌Rt△AFD(HL)∴CF=FD(全等三角形的对应边相等)∴点F是CD的中点如果把例5来个变身,聪明的同学们来再试身手吧!已知:如图AB=AE,∠B=∠E,BC=ED,点F是CD的中点(1)求证:AF⊥CD(2)连接BE后,还能得出什么结论?(写出两个)已知:AB=AD,CB=CD.求证:AC⊥BD.分析:欲证AC⊥BD,只需证∠AOB=∠AOD,这就要证明ABO≌ADO,它已经具备了两个条件:
7、AB=AD,OA=AO,所以只需证∠BAO=∠DAO,为了证明这一点,还需证明ABC≌ADC.证明:在ABC和ADC中,AB=AD(已知),CB=CD(已知),AC=AC(公共边)∴ABC≌ADC(SSS),∴∠BAO=∠DAO(全等三角形的对应角相等)在△ABO和△ADO中,AB=AD(已知),∠BAO=∠DAO(已证),AO=AO(公共边)∴△ABO≌△ADO(SAS),∴∠AOB=∠AOD(全等三角形的对应角相等)∴∠AOB=∠AOD=90°.∴AC⊥BD(垂直定义).又∵∠A
8、OB+∠AOD=180°(邻补角定义)如右图,练习练习已知:如右图,AB、CD相交于点O,AC∥DB,OC=OD,E、F为AB上两点,且AE=BF.求证:CE=DF.证明:在△AOC和△BOD中,∵AC∥DB,∴∠A=∠B(两直线平等,内错角相等).又∵∠AOC=∠BOD(对顶角相等)∠A=∠B(已证),OC=OD(已知)∴△AOC≌△BOD(AAS)∴AC=BD在△AEC和△BFD中,AC=BD(已证),∠A=∠B(已证),AE=BF(已知).∴△AEC≌△BFD(ASA)∴CE=DF请你谈谈