欢迎来到天天文库
浏览记录
ID:57139477
大小:19.00 KB
页数:6页
时间:2020-08-03
《激活学生思维 推进高效课堂讲课稿.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、激活学生思维推进高效课堂精品文档激活学生思维推进高效课堂高板小学吴磊摘要:创设问题情境是提供学生发问的前提条件,是培养提问题能力和养成提问习惯的有效措施。培养问题意识是培养学会创新的切入点。如何创设较好的问题情境,激发探索的兴趣呢?可以从学生感兴趣的实物、实例入手,采用故事、游戏、儿歌、学生喜闻乐见的活动形式,把抽象的数学知识(教材内容)与生活的实际内容(直观情景)紧密联系起来,把握最近发展区,营造学生认知心理上的悬念,让学生有问题可提,激活学生探索知识的积极心态。关键词:数学教学问题导入主动学习化繁为简(一)、创设问题情境创设问题情境是提供学生发问的前提条件,是
2、培养提问题能力和养成提问习惯的有效措施。培养问题意识是培养学会创新的切入点。如何创设较好的问题情境,激发探索的兴趣呢?可以从学生感兴趣的实物、实例入手,采用故事、游戏、儿歌、学生喜闻乐见的活动形式,把抽象的数学知识(教材内容)与生活的实际内容(直观情景)紧密联系起来,把握最近发展区,营造学生认知心理上的悬念,让学生有问题可提,激活学生探索知识的积极心态。例如:我在教一年级上册的《有几瓶牛奶》时,我就以笑笑数完牛奶遇到了难题,需要孩子们的帮助做为导入,让孩子们根据画面的内容提出问题:“左边有5瓶牛奶,右边有9瓶牛奶,一共有多少瓶牛奶的问题?”从而导出课题,这样的导入
3、方式新颖,孩子们不知不觉就被带入新课内容的学习中去了。又如《9的乘法口诀》,创设了这样的问题情境:屏幕显示校园,接着又看到一辆汽车运来了许多花卉。师:看到这些花你想知道什么?学生经思考提出了:这些花有什么用?有几种品种?买来多少盆花?学生一旦有了疑问,就会引起好奇心,开启思维,引发探索,为下面学习新知识,解决新问题架起了桥梁。(二)、教给质疑方法,防范于未然提问收集于网络,如有侵权请联系管理员删除精品文档培养学生的质疑能力。“学起于思,思源于疑。”学生如果有疑问,就会引起悬念,就会心理上感到困惑,产生认知冲突,进而拨动思维之弦。因此,教学中不仅要创设情境,教给学生
4、质疑的方法,引发质疑,使学生感到有问题要解决,而且要鼓励学生大胆质疑,充分地调动他们不断探索真谛的积极性和主动性,学会质疑,进而促进思维能力的发展。1、让学生掌握结构,明确质疑方向教师要在领会教材意图的同时,学会灵活地处理教材,从教材结构入手,把握知识之间联系,以此作为指导学生质疑的重点,做好示范提问,教给质疑的方法,为今后学生学法迁移,独立质疑做好铺垫。例如:“乘数是两、三位数的乘法”中的笔算部分的教学,这部分内容有五个知识点:乘数是两位数积不进位的乘法;乘数是两位数积有进位的乘法;乘数是三位数的乘法;乘数中间有“0”的乘法;乘数末尾有“0”的乘法,教师在教“乘
5、数是两数积的进位的乘法”时,就要注意引导学生从例题的特征、运算顺序、部分积的定位、计算结果等方面进行质疑,为后面学习多位数乘法质疑做好铺垫。在学习“除数是两位数除法”时就可以对照“乘法是两、三位数乘法的质疑方法进行类推,从而懂得从例题的特征、计算顺序、商的定位、怎样试商、被除数中间不够除怎么办、被除数末尾不够除怎么办等方面提问。2、让学生把握要点,提高质疑水平学生明确质疑方向,通过正确迁移,已具备了一定质疑能力,并不意味着每个问题都能问在重点处、点子上或问得恰到好处。因此,还要让学生把握知识的要点。一是从自己不明白、不理解、认为值得怀疑的地方发现问题,提出质疑;二
6、是已经理解的学生可以提问,考考教师和同学;三是在知识的“生长点”上,即在从旧知到新知的迁移过程中发现问题,提出问题;四是在知识的“结合点”上质疑,即在新旧知识的内在联系、比较上发现问题,提出质疑;五是在“认知冲突”收集于网络,如有侵权请联系管理员删除精品文档中找疑点,即新知识同自身原有认知结构矛盾冲突的地方发现问题,提出质疑;六是大胆猜想、联想、多角度、多层次地发现问题,提出质疑;七是从课题、知识的意义、性质、特征、定律和公式上发现问题,提出质疑。这样一来就为学生提供发展潜在能力的机会,让不同层次的学生都有人机会得到锻炼,从原有的基础上得到不同程度的发展。长此以往
7、,学生在这样民主和谐氛围的课堂里,就会为提出一个高质量的问题而自豪,学习的积极性势必倍增。3、在数学课堂中设计出学生混淆的题型,以错误形式出现,这样既可以加深印象有可以防范于未然。(三)、引导、类推、迁移,激发学生主动学习疑是思之始,学之端。教学中要正确处理好质疑和释疑的关系。质疑是一种手段,释疑才是目的。学生有了质疑的能力后,还要让学生知道知识生成的过程,指导学生掌握学习的步骤,才能逐渐独立地策划学习活动,自己学习同类知识,从而真正地发挥自身的主体作用。例如:在面积公式的推导方面,当教学平行四边形面积计算时,除要求学生利用已掌握的矩形知识,懂得用数方格的方法求出
8、面积外,还
此文档下载收益归作者所有