2020_2021学年高中数学第三章不等式3基本不等式第1课时基本不等式练习含解析北师大版必修.doc

2020_2021学年高中数学第三章不等式3基本不等式第1课时基本不等式练习含解析北师大版必修.doc

ID:56630076

大小:1.98 MB

页数:8页

时间:2020-06-30

2020_2021学年高中数学第三章不等式3基本不等式第1课时基本不等式练习含解析北师大版必修.doc_第1页
2020_2021学年高中数学第三章不等式3基本不等式第1课时基本不等式练习含解析北师大版必修.doc_第2页
2020_2021学年高中数学第三章不等式3基本不等式第1课时基本不等式练习含解析北师大版必修.doc_第3页
2020_2021学年高中数学第三章不等式3基本不等式第1课时基本不等式练习含解析北师大版必修.doc_第4页
2020_2021学年高中数学第三章不等式3基本不等式第1课时基本不等式练习含解析北师大版必修.doc_第5页
资源描述:

《2020_2021学年高中数学第三章不等式3基本不等式第1课时基本不等式练习含解析北师大版必修.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、基本不等式A级 基础巩固一、选择题1.下列结论正确的是( B )A.当x>0且x≠1时,lgx+≥2B.当x>0时,+≥2C.当x≥2时,x+的最小值为2D.当00,b>0,∴+=(+)(a+b)=2++≥2+2=4,

2、当且仅当a=b=时,等号成立.3.若x>4,则函数y=x+( B )A.有最大值-6 B.有最小值6C.有最大值-2 D.有最小值2[解析] ∵x>4,∴x-4>0,∴y=x-4++4≥2+4=6.当且仅当x-4=,即x-4=1,x=5时,取等号.84.若a>b>1,P=,Q=(lga+lgb),R=lg,则( B )A.R

3、小值为2的是( B )A.y=x+B.y=3x+3-xC.y=lgx+(10时,y=x+≥2,当x<0时,y=-[(-)+(-x)]≤-2;对于B,∵3x>0,3-x>0,∴y=3x+3-x≥2.对于C、D两项中,等号均不能成立.6.某工厂第一年产量为A,第二年的增长率为a,第三年的增长率为b,这两年的平均增长率为x,则( B )A.x= B.x≤C.x> D.x≥[解析] ∵这两年的平均增长率为x,∴A(1+x)2=A(1+a)(1+b),∴(1+x)2=(1+

4、a)(1+b),由题设a>0,b>0.∴1+x=≤=1+,∴x≤.8等号在1+a=1+b即a=b时成立.二、填空题7.若x<0,则y=+2x+的最大值是-3.[解析] y=-(-2x-)≤-2=-2=-4=-3.当且仅当-2x=-,即x=-时取等号.8.(2018·天津理,13)已知a,b∈R,且a-3b+6=0,则2a+的最小值为.[解析] ∵a-3b+6=0,∴a-3b=-6,∴2a+=2a+2-3b≥2=2=2=2×2-3=,当且仅当时等号成立,即时取到等号.三、解答题9.(1)若x>0,y>0,且lgx+lgy=2,求5

5、x+2y的最小值;(2)已知x>1,y>1,且lgx+lgy=2,求lgx·lgy的最大值;(3)已知x>1,求y=的最小值.[解析] (1)∵lgx+lgy=2,∴lg(xy)=2,∴xy=100,又∵5x+2y≥2=2=20,当且仅当5x=2y,即x=2,y=5时,5x+2y取得最小值20.(2)∵x>1,y>1,∴lgx>0,lgy>0,∴lgx·lgy≤()2,∴lgx·lgy≤1,即lgx·lgy的最大值为1.当且仅当lgx=lgy,即x=y=10时,等号成立.(3)y===x+1+=x-1++2≥2+2=4,当且仅当

6、=x-1,即(x-1)2=1时,等式成立,∵x>1,8∴当x=2时,ymin=4.10.(1)求函数y=+x(x>3)的最小值;(2)设x>0,求y=2-x-的最大值.[解析] y=+x=+(x-3)+3,∵x>3,∴x-3>0,∴+(x-3)≥2=2,当且仅当=x-3,即x-3=1,x=4时,等号成立.∴当x=4时,函数y=+x(x>3)取最小值2+3=5.(2)∵x>0,∴x+≥2=4,∴y=2-≤2-4=-2.当且仅当x=,即x=2时等号成立,y取最大值-2.B级 素养提升一、选择题1.如果a,b满足0

7、,则,a,2ab,a2+b2中值最大的是( D )A. B.aC.2ab D.a2+b2[解析] 解法一:∵02a,∴a<,又a2+b2≥2ab,∴最大数一定不是a和2ab,又a2+b2=(a+b)2-2ab=1-2ab,∵1=a+b>2,∴ab<,∴1-2ab>1-=,即a2+b2>.解法二:特值检验法:取a=,b=,则2ab=,a2+b2=,∵>>>,∴a2+b2最大.82.设x+3y=2,则函数z=3x+27y的最小值是( D )A. B.2C.3 D.6[解析] z=3x+27y≥2=2=6,当且

8、仅当x=2y=1,即x=1,y=时,z=3x+27y取最小值6.3.设正数x,y满足x+4y=40,则lgx+lgy的最大值是( D )A.40 B.10C.4 D.2[解析] ∵x+4y≥2=4,∴≤==10,当且仅当x=4y即x=20,y=5时取“=”,∴x

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。