欢迎来到天天文库
浏览记录
ID:44687203
大小:72.72 KB
页数:5页
时间:2019-10-24
《高中数学第三章不等式3.4基本不等式第2课时基本不等式的应用练习含解析新人教A版必修》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第三章不等式3.4基本不等式:≤第2课时基本不等式的应用A级 基础巩固一、选择题1.若x>0,则函数y=-x-( )A.有最大值-2B.有最小值-2C.有最大值2D.有最小值2解析:因为x>0,所以x+≥2.所以-x-≤-2.当且仅当x=1时,等号成立,故函数y=-x-有最大值-2.答案:A2.下列命题正确的是( )A.函数y=x+的最小值为2B.若a,b∈R且ab>0,则+≥2C.函数+的最小值为2D.函数y=2-3x-的最小值为2-4解析:A错误,当x<0时或≠1时不成立;B正确,因为ab>
2、0,所以>0,>0,且+≥2;C错误,若运用基本不等式,需2=1,x2=-1无实数解;D错误,y=2-(3x+)≤2-4.答案:B3.lg9·lg11与1的大小关系是( )A.lg9·lg11>1B.lg9·lg11=1C.lg9·lg11<1D.不能确定解析:lg9×lg11≤=<==1.答案:C4.已知a,b∈R,且a+b=1,则ab+的最小值为( )A.2B.C.D.2答案:C5.已知a=(x-1,2),b=(4,y)(x,y为正数),若a⊥b,则xy的最大值是( )A.B.-C.1D.
3、-1解析:因为a⊥b,则a·b=0,所以4(x-1)+2y=0,所以2x+y=2,所以xy=(2x)·y≤·=,当且仅当2x=y时,等号成立.答案:A二、填空题6.设x>-1,则函数y=的最小值是________.解析:因为x>-1,所以x+1>0,设x+1=t>0,则x=t-1,于是有y===t++5≥2+5=9,当且仅当t=,即t=2时取“=”,此时x=1.所以当x=1时,函数y=取得最小值9.答案:97.若正数a,b满足ab=a+b+3,则ab的取值范围是________.解析:ab=a+b+
4、3≥2+3,所以(-3)(+1)≥0,所以≥3,所以ab≥9.答案:[9,+∞)8.当x>1时,不等式x+≥a恒成立,则实数a的最大值为________.解析:x+≥a恒成立⇔≥a,因为x>1,即x-1>0,所以x+=x-1++1≥2+1=3,当且仅当x-1=,即x=2时,等号成立.所以a≤3,即a的最大值为3.答案:3三、解答题9.已知x,y>0,且x+2y+xy=30,求xy的范围.解:因为x,y是正实数,故30=x+2y+xy≥2+xy,当且仅当x=2y,即x=6,y=3时,等号成立.所以xy
5、+2-30≤0.令=t,则t>0,得t2+2t-30≤0,解得-5≤t≤3.又t>0,知0<≤3,即xy的范围是(0,18].10.(1)设a>b>c,且+≥恒成立,求m的取值范围.(2)记F(x,y)=x+y-a(x+2),x,y∈(0,+∞).若对任意的x,y∈(0,+∞),恒有F(x,y)≥0,请求出a的取值范围.解:(1)由a>b>c,知a-b>0,a-c>0.所以原不等式等价于+≥m.要使原不等式恒成立,只需+的最小值不小于m即可.因为+=+=2++≥2+2=4.当且仅当=,即2b=a+c
6、时,等号成立,所以m≤4,即m∈(-∞,4].(2)由F(x,y)≥0,得x+y≥a(x+2).因为x>0,y>0,所以a≤.所以a≤.因为2≤x+2y,所以≥=,当且仅当x=2y>0时,等号成立.所以a∈.B级 能力提升1.某工厂拟建一座平面图为矩形,且面积为400平方米的三级污水处理池,如图所示,池外圈造价为每米200元,中间两条隔墙造价为每米250元,池底造价为每平方米80元(池壁的厚度忽略不计,且池无盖).若使水池的总造价最低,那么污水池的长和宽分别为( )A.40米,10米B.20米,2
7、0米C.30米,米D.50米,8米解析:设总造价为y元,污水池的长为x米,则宽为米,总造价y=×200+2×250·+80×400=400·+32000≥400×2+32000=56000(元),当且仅当x=,即x=30时等号成立,此时污水池的宽为米.答案:C2.函数y=loga(x+3)-1(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中m,n>0,则+的最小值为________.解析:函数y=loga(x+3)-1(a>0,a≠1)的图象恒过定点A(-2,-1),且点A
8、在直线mx+ny+1=0上,所以2m+n=1,m,n>0,所以+=·(2m+n)=4++≥4+2=8,当且仅当即时等号成立.答案:83.桑基鱼塘是某地一种独具地方特色的农业生产形式,某研究单位打算开发一个桑基鱼塘项目,该项目准备购置一块1800平方米的矩形地块,中间挖出三个矩形池糖养鱼,挖出的泥土堆在池糖四周形成基围(阴影部分所示)种植桑树,池糖周围的基围宽约为2米,如图,设池塘所占的总面积为S平方米.(1)试用x表示S;(2)当x取何值时,才能使得S最大?并求出S的
此文档下载收益归作者所有