欢迎来到天天文库
浏览记录
ID:56617216
大小:559.99 KB
页数:20页
时间:2020-06-29
《2020年高考数学(理)热点·重点·难点专练5 概率与统计(解析版).docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、重难点05概率与统计【高考考试趋势】统计主要考查抽样的统计分析、变量的相关关系,独立性检验、用样本估计总体及其特征的思想,以排列组合为工具,考查对五个概率事件的判断识别及其概率的计算.试题考查特点是以实际应用问题为载体,小题部分主要是考查排列组合与古典概型,几何概型解答题部分主要考查独立性检验、超几何分布、离散型分布以及正态分布对应的数学期望以及方差.概率的应用立意高,情境新,赋予时代气息,贴近学生的实际生活.取代了传统意义上的应用题,成为高考中的亮点.解答题中概率与统计的交汇是近几年考查的热点趋势,应该引起关注【知识点分析以及满分技巧】1 抽样
2、方法是统计学的基础,在复习时要抓住各种抽样方法的概念以及它们之间的区别与联系.茎叶图也成为高考的热点内容,应重点掌握.明确变量间的相关关系,体会最小二乘法和线性回归方法是解决两个变量线性相关的基本方法,就能适应高考的要求.2.求解概率问题首先确定是何值概型再用相应公式进行计算,特别对于解互斥事件(独立事件)的概率时,要注意两点:(1)仔细审题,明确题中的几个事件是否为互斥事件(独立事件),要结合题意分析清楚这些事件互斥(独立)的原因.(2)要注意所求的事件是包含这些互斥事件(独立事件)中的哪几个事件的和(积),如果不符合以上两点,就不能用互斥事件
3、的和的概率.3.离散型随机变量的均值和方差是概率知识的进一步延伸,是当前高考的热点内容.解决均值和方差问题,都离不开随机变量的分布列,另外在求解分布列时还要注意分布列性质的应用.【常见题型限时检测】(建议用时:35分钟)一、单选题1.(2019·广西高考模拟(理))中国古代的五经是指:《诗经》、《尚书》、《礼记》、《周易》、《春秋》,甲、乙、丙、丁、戊名同学分别选取了其中一本不同的书作为课外兴趣研读,若甲乙都没有选《诗经》,乙也没选《春秋》,则名同学所有可能的选择有()A.种B.种C.种D.种【答案】D【分析】分两类求解:(1)甲选《春秋》;(2
4、)甲不选《春秋》;分别求出可能的选择情况,再求和即可得出结果.【详解】(1)若甲选《春秋》,则有种情况;(2)若甲不选《春秋》,则有种情况;所以名同学所有可能的选择有种情况.故选D【点睛】本题主要考查计数原理,熟记排列组合的概念等即可,属于常考题型.2.(2020·重庆巴蜀中学高三月考(理))新高考方案规定,普通高中学业水平考试分为合格性考试(合格考)和选择性考试(选择考).其中“选择考”成绩将计入高考总成绩,即“选择考”成绩根据学生考试时的原始卷面分数,由高到低进行排序,评定为、、、、五个等级.某试点高中2018年参加“选择考”总人数是2016
5、年参加“选择考”总人数的2倍,为了更好地分析该校学生“选择考”的水平情况,统计了该校2016年和2018年“选择考”成绩等级结果,得到如下图表:针对该校“选择考”情况,2018年与2016年比较,下列说法正确的是()A.获得A等级的人数减少了B.获得B等级的人数增加了1.5倍C.获得D等级的人数减少了一半D.获得E等级的人数相同【答案】B【分析】设出两年参加考试的人数,然后根据图表计算两年等级为A,B,C,D,E的人数,由此判断出正确选项.【详解】设年参加考试人,则年参加考试人,根据图表得出两年各个等级的人数如下图所示:年份ABCDE201620
6、18由图可知A,C,D选项错误,B选项正确,故本小题选B.【点睛】本小题主要考查图表分析,考查数据分析与处理能力,属于基础题.3.(2019·广东高考模拟(理))己知某产品的销售额与广告费用之间的关系如下表:(单位:万元)01234(单位:万元)1015203035若求得其线性回归方程为,则预计当广告费用为6万元时的销售额为A.42万元B.45万元C.48万元D.51万元【答案】C【分析】根据上表中的数据,求得样本点中心,代入回归直线的方程,求得的值,得到回归直线的方程,即可求解.【详解】由题意,根据上表中的数据,可得,,即回归方程经过样本点中心
7、,又由线性回归方程为,所以,解得,所以,当时,,故选C.【点睛】本题主要考查了回归直线方程的应用问题,其中解答中熟记回归直线方程的性质,求得归直线的方程是解答的关键,着重考查了运算与求解能力,属于基础题.4.(2019·横峰中学高考模拟(理))已知展开式中第三项的二项式系数与第四项的二项式系数相同,且,若,则展开式中常数项()A.32B.24C.4D.8【答案】B【分析】先由二项展开式中第三项的二项式系数与第四项的二项式系数相同,求出;再由求出,由二项展开式的通项公式,即可求出结果.【详解】因为展开式中第三项的二项式系数与第四项的二项式系数相同,
8、所以,因此,又,所以,令,则,又,所以,因此,所以展开式的通项公式为,由得,因此展开式中常数项为.故选B【点睛】本题主要考查求指定项的系
此文档下载收益归作者所有