资源描述:
《九年级数学上册 21 一元二次方程复习导学案 (新版)新人教版.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第21章一元二次方程一、知识梳理1.一元二次方程的概念只含有 个未知数(一元),并且未知数的最高次数是 的方程,叫做一元二次方程.[注意]一元二次方程判定的条件是:(1)必须是整式方程;(2)二次项系数不为零;(3)未知数的最高次数是2,且只含有一个未知数.2.一元二次方程的解法一元二次方程有四种解法: 法、 法、 法和 法.其基本思想是 .[注意]公式法其实质是配方法,只不过省去了配方的过程,但用公式时应注意:(1)将一元二次方程化为一般形式,即先确定a、b、c的值;(2)牢记使用公式的前提是b2-4ac≥0.3.一元二次方程根的判别式Δ=b2-4ac(1)Δ>0⇔ax
2、2+bx+c=0(a≠0)有的实数根;(2)Δ=0⇔ax2+bx+c=0(a≠0)有 的实数根;(3)Δ<0⇔ax2+bx+c=0(a≠0)实数根.[注意](1)根的判别式是在一元二次方程的一般形式下得出的,因此使用根的判别式之前,必须把一元二次方程化成一般形式;(2)如果说一元二次方程有实根,应该包括有两个相等的实数根与两个不相等的实数根两种情况,此时b2-4ac≥0,不能丢掉等号;(3)在利用根的判别式确定方程中字母系数的取值范围时,如果二次项系数含有字母,要加上二次项系数不为零这个限制条件.4.一元二次方程ax2+bx+c=0(a≠0)的两根为x1、x2,则两根与方程系数之间
3、有如下关系:x1+x2= ,x1·x2= .[注意]它成立的条件:①二次项系数不能为0;②方程根的判别式大于或等于0.5.一元二次方程的主要应用类型:几何面积、增长率、商品销售等。二、题型、技巧归纳考点一:一元二次方程及根的有关概念【主题训练1】若(a-3)+4x+5=0是关于x的一元二次方程,则a的值为( )A.3 B.-3 C.±3 D.无法确定【解答】归纳:考点二:一元二次方程的解法【训练2】解方程x2-2x-1=0.【解答】归纳:考点三:根的判别式及根与系数的关系【训练3】若5k+20<0,则关于x的一元二次方程x2+4x-k=0的根的情况是( )A.没有
4、实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法判断【解答】归纳:考点四:一元二次方程的应用【训练4】某校为培养青少年科技创新能力,举办了动漫制作活动,小明设计了点做圆周运动的一个雏型.如图所示,甲、乙两点分别从直径的两端点A,B以顺时针、逆时针的方向同时沿圆周运动.甲运动的路程l(cm)与时间t(s)满足关系:l=t2+t(t≥0),乙以4cm/s的速度匀速运动,半圆的长度为21cm.(1)甲运动4s后的路程是多少?(2)甲、乙从开始运动到第一次相遇时,它们运动了多少时间?(3)甲、乙从开始运动到第二次相遇时,它们运动了多少时间?【解答】归纳:考点五 几何图形型应用题【
5、训练5】如图所示,在长为10cm,宽为8cm的矩形的四个角上截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长.例5图【解答】归纳:【典例精讲】例题:某百货大楼服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“十一”国庆节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:如果每件童装降价4元,那么平均每天就可多售出8件.要想平均每天在销售这种童装上盈利1200元,那么每件童装应降价多少?解:三、随堂检测1.下列方程中,一定是一元二次方程的是( )A.ax2+bx+c=
6、0 B.x2=0C.3x2+2y-=0 D.x2+-5=02.若关于x的一元二次方程ax2+bx+5=0(a≠0)的解是x=1,则2013-a-b的值是( )A.2018 B.2008 C.2014 D.20123.一元二次方程2x2-3x-2=0的二次项系数是 ,一次项系数是 ,常数项是 .4.已知b<0,关于x的一元二次方程(x-1)2=b的根的情况是( )A.有两个不相等的实数根,B.有两个相等的实数根,C.没有实数根,D.有两个实数根5、若将方程x2+6x=7化为(x+m)2=16,则m= .6.解方程:(x-3)2-9=0.7.下列一元二次
7、方程有两个相等实数根的是( )A.x2+3=0 B.x2+2x=0C.(x+1)2=0 D.(x+3)(x-1)=08.8.已知一元二次方程:①x2+2x+3=0,②x2-2x-3=0,下列说法正确的是( )A.①②都有实数解B.①无实数解,②有实数解C.①有实数解,②无实数解D.①②都无实数解9.已知一元二次方程x2-6x+c=0有一个根为2,则另一根为( )A.2 B.3 C.4 D.810.10.若x1,x2是一元二次方