新北师大版-第一章勾股定理导学案.doc

新北师大版-第一章勾股定理导学案.doc

ID:55584643

大小:1.95 MB

页数:21页

时间:2020-05-19

新北师大版-第一章勾股定理导学案.doc_第1页
新北师大版-第一章勾股定理导学案.doc_第2页
新北师大版-第一章勾股定理导学案.doc_第3页
新北师大版-第一章勾股定理导学案.doc_第4页
新北师大版-第一章勾股定理导学案.doc_第5页
资源描述:

《新北师大版-第一章勾股定理导学案.doc》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、第一章勾股定理导学案第1课时探索勾股定理(1)班级:姓名:时间:学习目标:1、经历探索勾股定理的过程,发展学生的合情推理意识,体会数形结合的思想。2、会初步利用勾股定理解决实际问题。学习过程:一、课前预习:1、三角形按角的大小可分为:、、。2、三角形的三边关系:三角形的任意两边之和;任意两边之差。3、直角三角形的两个锐角;4、在RtΔABC中,两条直角边长分别为a、b,则这个直角三角形的面积可以表示为:。二、自主学习:探索直角三角形三边的特殊关系:(1)画一直角三角形,使其两边满足下面的条件,测量第三边的长度,完成下表;直角三角形1直角边a直角边b斜边c三边关系满足

2、关系34直角三角形2直角边a直角边b斜边c三边关系满足关系513(2)猜想:直角三角形的三边满足什么关系?(3)任画一直角三角形,量出三边长度,看得到的数据是否符合你的猜想。猜想:三、合作探究::如果下图中小方格的边长是1,观察图形,完成下表,并与同学交流:你是怎样得到的?图形A的面积B的面积C的面积A、B、C面积的关系图1-1图1-2图1-3图1-4思考:每个图中正方形的面积与三角形的边长有何关系?归纳得出勾股定理。勾股定理:直角三角形等于;图1.1-1几何语言表述:图1.1-1在RtΔABC中,C=90°,BC=a,AC=b,AB=c,则上面的定理可以表示为:。

3、四、课堂练习:1、求下图中字母所代表的正方形的面积2、求出下列各图中x的值。3.如图所示,强大的台风使得一根旗杆在离地面9米处折断倒下,旗杆顶部落在离旗杆底部12米处。旗杆折断之前有多高?五、当堂检测:1.在△ABC中,∠C=90°,(1)若BC=5,AC=12,则AB=;(2)若BC=3,AB=5,则AC=;(3)若BC∶AC=3∶4,AB=10,则BC=,AC=.2.某农舍的大门是一个木制的矩形栅栏,它的高为2m,宽为1.5m,现需要在相对的顶点间用一块木棒加固,木棒的长为.3.在Rt△ABC中,∠C=90°,AC=5,AB=13,则BC=,该直角三角形的面积为

4、。4.直角三角形两直角边长分别为5cm,12cm,则斜边上的高为.5.若直角三角形的两直角边之比为3:4,斜边长为20㎝,则斜边上的高为。ABCD7cm能力提升:6.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和为_______cm2.7.一个直角三角形的三边长为3、4和a,则以a为半径的圆的面积是。8.如图,点C是以AB为直径的半圆上一点,∠ACB=90°,AC=3,BC=4,则图中阴影部分的面积是。9.等腰三角形的腰长为13cm,底边长为10cm,则其面积为.10.△ABC中,AB=15

5、,AC=13,高AD=12,求△ABC的周长。课后作业:1、在Rt△ABC中,,(1)如果a=3,b=4,则c=________;(2)如果a=6,b=8,则c=________;(3)如果a=5,b=12,则c=________;第4题图S1S2S3(4)如果a=15,b=20,则c=________.2、下列说法正确的是(  )A.若、、是△ABC的三边,则B.若、、是Rt△ABC的三边,则C.若、、是Rt△ABC的三边,,则D.若、、是Rt△ABC的三边,,则3、一个直角三角形中,两直角边长分别为3和4,下列说法正确的是()A.斜边长为25B.三角形周长为25

6、C.斜边长为5D.三角形面积为204、如图,三个正方形中的两个的面积S1=25,S2=144,则另一个的面积S3为________.5、一个直角三角形的两边长直角边分别为5cm和12cm,则第三边的长为。6.在Rt△ABC中,∠C=90°,①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若c=61,b=60,则a=__________;④若a∶b=3∶4,c=10则SRt△ABC=________。7、一直角三角形的一直角边长为6,斜边长比另一直角边长大2,则斜边的长为。8、一个直角三角形的两边长分别为3c

7、m和4cm,则第三边的为。9、已知,如图在ΔABC中,AB=BC=CA=2cm,AD是边BC上的高.求①AD的长;②ΔABC的面积.拓展提高:1.已知:如图,在△ABC中,AB=AC,D在CB的延长线上。求证:⑴AD2-AB2=BD·CD⑵若D在CB上,结论如何,试证明你的结论。第2课时探索勾股定理(2)班级:姓名:时间:学习目标:1、掌握勾股定理,理解利用拼图验证勾股定理的方法。2、能运用勾股定理解决一些实际问题。学习过程:一、知识回顾:1、勾股定理:2、求下列直角三角形的未知边的长3、在一个直角三角形中,两条直角边分别为,,斜边为:(1)如果,,则,面积为;

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。