勾股定理复习题与答案.doc

勾股定理复习题与答案.doc

ID:55558709

大小:436.00 KB

页数:27页

时间:2020-05-17

勾股定理复习题与答案.doc_第1页
勾股定理复习题与答案.doc_第2页
勾股定理复习题与答案.doc_第3页
勾股定理复习题与答案.doc_第4页
勾股定理复习题与答案.doc_第5页
资源描述:

《勾股定理复习题与答案.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、八年级上数学专题训练一《勾股定理》典型题练习答案解析一、知识要点:1、勾股定理勾股定理:直角三角形两直角边的平方和等于斜边的平方。也就是说:如果直角三角形的两直角边为a、b,斜边为c,那么a2+b2=c2。公式的变形:a2=c2-b2,b2=c2-a2。2、勾股定理的逆定理如果三角形ABC的三边长分别是a,b,c,且满足a2+b2=c2,那么三角形ABC是直角三角形。这个定理叫做勾股定理的逆定理.该定理在应用时,同学们要注意处理好如下几个要点:①已知的条件:某三角形的三条边的长度.②满足的条件:最大边的平方=最小边的平方+中间边的平方.③

2、得到的结论:这个三角形是直角三角形,并且最大边的对角是直角.④如果不满足条件,就说明这个三角形不是直角三角形。3、勾股数满足a2+b2=c2的三个正整数,称为勾股数。注意:①勾股数必须是正整数,不能是分数或小数。②一组勾股数扩大相同的正整数倍后,仍是勾股数。常见勾股数有:(3,4,5 )(5,12,13 )( 6,8,10 ) ( 7,24,25 ) ( 8,15,17 )(9,12,15 ) 常用勾股数口诀记忆常见勾股数3,4,5:勾三股四弦五  5,12,13:我要爱一生6,8,10:连续的偶数  7,24,25:企鹅是二百五  8,

3、15,17:八月十五在一起特殊勾股数连续的勾股数只有3,4,5  连续的偶数勾股数只有6,8,104、最短距离问题:主要运用的依据是两点之间线段最短。二、考点剖析考点一:利用勾股定理求面积1、求阴影部分面积:(1)阴影部分是正方形;(2)阴影部分是长方形;(3)阴影部分是半圆.2.如图,以Rt△ABC的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系.3、如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S1、S2、S3,则它们之间的关系是()A.S1-S2=S3B.S1+S2=S3C.S2+S3

4、S3=S1【类型题总结】(a)如图(1)分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用表示S1、S2、S3则它们有S2+S3=S1关系.(b)如图(2)分别以直角三角形ABC三边向外作三个正方形,其面积表示S1、S2、S3.则它们有S2+S3=S1关系.(c)如图(3)分别以直角三角形ABC三边向外作三个正三角形,面积表示S1、S2、S3,则它们有S2+S3=S1关系.并选择其中一个命题证明.考点:勾股定理.专题:计算题.分析:(a)分别用AB、BC和AC表示出S1、S2、S3,然后根据AB2=AC2+BC2即可得出S1、S

5、2、S3的关系;(b)分别用AB、BC和AC表示出S1、S2、S3,然后根据AB2=AC2+BC2即可得出S1、S2、S3的关系;(c)分别用AB、BC和AC表示出S1、S2、S3,然后根据AB2=AC2+BC2即可得出S1、S2、S3的关系.解答:解:(1)S3=πAC2,S2=πBC2S1=AB2∴S2+S3=S1.(2)S2+S3=S1…(4分)由三个四边形都是正方形则:∵S3=AC2,S2=BC2,S1=AB2,…(8分)∵三角形ABC是直角三角形,又∵AC2+BC2=AB2…(10分)∴S2+S3=S1.(3)S1=AB2S2=

6、BC2S3=AC2∴S2+S3=S1.点评:此题主要涉及的知识点:三角形、正方形、圆的面积计算以及勾股定理的应用,解题关键是熟练掌握勾股定理的公式,难度一般.4、四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积。(S=36)5、在直线上依次摆放着七个正方形(如图4所示)。已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是、(此题为2012•庆阳中考题)=_______4______。考点:勾股定理;全等三角形的判定与性质.专题:规律型.分析:运用勾股定理可知,每两

7、个相邻的正方形面积和都等于中间斜放的正方形面积,据此即可解答.解答:解:观察发现,∵AB=BE,∠ACB=∠BDE=90°,∴∠ABC+∠BAC=90°,∠ABC+∠EBD=90°,∴∠BAC=∠EBD,∴△ABC≌△BDE(AAS),∴BC=ED,∵AB2=AC2+BC2,∴AB2=AC2+ED2=S1+S2,即S1+S2=1,同理S3+S4=3.则S1+S2+S3+S4=1+3=4.故答案为:4.点评:运用了全等三角形的判定以及性质、勾股定理.注意发现两个小正方形的面积和正好是之间的正方形的面积.考点二:在直角三角形中,已知两边求第三

8、边1.在直角三角形中,若两直角边的长分别为1cm,2cm,则斜边长为cm.2.(易错题、注意分类的思想)已知直角三角形的两边长为3、2,则另一条边长的平方是5或13分析:已知直角三角形两边的长

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。