鲁京津琼专用2020版高考数学大一轮复习第九章平面解析几何高考专题突破五高考中的圆锥曲线问题第1课时范围最值问题课件.pptx

鲁京津琼专用2020版高考数学大一轮复习第九章平面解析几何高考专题突破五高考中的圆锥曲线问题第1课时范围最值问题课件.pptx

ID:52871495

大小:5.74 MB

页数:65页

时间:2020-03-30

鲁京津琼专用2020版高考数学大一轮复习第九章平面解析几何高考专题突破五高考中的圆锥曲线问题第1课时范围最值问题课件.pptx_第1页
鲁京津琼专用2020版高考数学大一轮复习第九章平面解析几何高考专题突破五高考中的圆锥曲线问题第1课时范围最值问题课件.pptx_第2页
鲁京津琼专用2020版高考数学大一轮复习第九章平面解析几何高考专题突破五高考中的圆锥曲线问题第1课时范围最值问题课件.pptx_第3页
鲁京津琼专用2020版高考数学大一轮复习第九章平面解析几何高考专题突破五高考中的圆锥曲线问题第1课时范围最值问题课件.pptx_第4页
鲁京津琼专用2020版高考数学大一轮复习第九章平面解析几何高考专题突破五高考中的圆锥曲线问题第1课时范围最值问题课件.pptx_第5页
资源描述:

《鲁京津琼专用2020版高考数学大一轮复习第九章平面解析几何高考专题突破五高考中的圆锥曲线问题第1课时范围最值问题课件.pptx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第1课时 范围、最值问题第九章高考专题突破五 高考中的圆锥曲线问题NEIRONGSUOYIN内容索引题型分类深度剖析课时作业题型分类 深度剖析1PARTONE题型一 范围问题师生共研(1)求椭圆C的标准方程;又∵直线x-y-2=0经过椭圆的右顶点,(2)设不过原点O的直线与椭圆C交于M,N两点,且直线OM,MN,ON的斜率依次成等比数列,求△OMN面积的取值范围.解由题意可设直线的方程为y=kx+m(k≠0,m≠0),消去y,并整理得(1+4k2)x2+8kmx+4(m2-1)=0,于是y1y2=(kx1+m)(kx2+m)=

2、k2x1x2+km(x1+x2)+m2.又直线OM,MN,ON的斜率依次成等比数列,又由Δ=64k2m2-16(1+4k2)(m2-1)=16(4k2-m2+1)>0,得0

3、范围,解这类问题的核心是建立两个参数之间的等量关系.(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围.(4)利用已知的不等关系构造不等式,从而求出参数的取值范围.(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.思维升华所以y1+y2=2y0,所以PM垂直于y轴.跟踪训练1(2018·浙江)如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.(1)设AB中点为M,证明:PM垂直于y轴;因为PA,PB的中点在抛物线上

4、,(2)若P是半椭圆x2+=1(x<0)上的动点,求△PAB面积的取值范围.题型二 最值问题多维探究命题点1利用三角函数有界性求最值例2过抛物线y2=4x的焦点F的直线交抛物线于A,B两点,点O是坐标原点,则

5、AF

6、·

7、BF

8、的最小值是√解析设直线AB的倾斜角为θ,命题点2数形结合利用几何性质求最值例3在平面直角坐标系xOy中,P为双曲线x2-y2=1右支上的一个动点.若点P到直线x-y+1=0的距离大于c恒成立,则实数c的最大值为____.解析双曲线x2-y2=1的渐近线为x±y=0,直线x-y+1=0与渐近线x-y=0平行

9、,命题点3转化为函数利用基本不等式或二次函数求最值例4已知点P是圆O:x2+y2=1上任意一点,过点P作PQ⊥y轴于点Q,延长QP到点M,使=.(1)求点M的轨迹E的方程;(2)过点C(m,0)作圆O的切线l,交(1)中的曲线E于A,B两点,求△AOB面积的最大值.解由题意可知直线l与y轴不垂直,故可设l:x=ty+m,t∈R,A(x1,y1),B(x2,y2),∵l与圆O:x2+y2=1相切,其中Δ=4m2t2-4(t2+4)(m2-4)=48>0,∴△AOB面积的最大值为1.处理圆锥曲线最值问题的求解方法圆锥曲线中的最值问

10、题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.思维升华(1)求实数m的取值范围;(2)求△AOB面积的最大值(O为坐标原点).课时作业2PARTTWO基础保分练√12345678910111213141516123456789101112131415162.定长为4的线段MN的两端点在抛物线y2=x上移动,设点P为线

11、段MN的中点,则点P到y轴距离的最小值为A.1B.C.2D.512345678910111213141516√(两边之和大于第三边且M,N,F三点共线时取等号).√1234567891011121314151612345678910111213141516√1234567891011121314151612345678910111213141516解析由于以O为圆心,以b为半径的圆内切于椭圆,所以要使以O为圆心,以c为半径的圆与椭圆恒有公共点,需满足c≥b,则c2≥b2=a2-c2,√123456789101112131415

12、165.(2018·云南昆明一中摸底)设O为坐标原点,P是以F为焦点的抛物线y2=2px(p>0)上任意一点,M是线段PF上的点,且

13、PM

14、=2

15、MF

16、,则直线OM的斜率的最大值为12345678910111213141516√123456789101112131415166

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
相关文章
更多