欢迎来到天天文库
浏览记录
ID:52436209
大小:751.50 KB
页数:28页
时间:2020-04-06
《【人教版八年级数学上册】第十一章-小结与复习-PPT精品课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、第十一章三角形小结与复习要点梳理考点讲练课堂小结课后作业腰和底不等的等腰三角形要点梳理1.三角形的三边关系:2.三角形的分类三角形的两边之和大于第三边,两边之差小于第三边.按边分按角分不等边三角形等腰三角形等边三角形直角三角形锐角三角形钝角三角形3.三角形的高、中线与角平分线高:顶点与对边垂足间的线段,三条高或其延长线相交于一点,如图.中线:顶点与对边中点间的线段,三条中线相交于一点(重心),如图.角平分线:三条角平分线相交于一点,如图.4.三角形的内角和与外角(1)三角形的内角和等于180°;(2)三角形的一个外角等于与它不相邻的两个内角的和;(3)
2、三角形的一个外角大于和它不相邻的任何一个内角.5.多边形及其内角和n边形内角和等于(n-2)×180°(n≥3的整数).n边形的外角和等于360°.正多边形的每个内角的度数是正多边形的每个外角的度数是在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形.正多边形的各个角都相等,各条边都相等的多边形.考点一三角形的三边关系例1已知两条线段的长分别是3cm、8cm,要想拼成一个三角形,且第三条线段a的长为奇数,问第三条线段应取多长?解:由三角形两边之和大于第三边,两边之差小于第三边得8-33、或9cm.考点讲练三角形两边之和大于第三边,可以用来判断三条线段能否组成三角形,在运用中一定要注意检查是否任意两边的和都大于第三边,也可以直接检查较小两边之和是否大于第三边.三角形的三边关系在求线段的取值范围以及在证明线段的不等关系中有着重要的作用.1.以线段3、4、x-5为边组成三角形,那么x的取值范围是.64、这时另两边长分别为6,4.综上所述,另两边长为5,5或6,4.【变式题】已知等腰三角形的一边长为4,另一边长为8,则这个等腰三角形的周长为()A.16B.20或16C.20D.12C归纳等腰三角形的底边长不确定时,要分两种情况讨论,还要注意三边是否构成三角形.2.若(a-1)2+5、b-26、=0,则以a,b为边长的等腰三角形的周长为.5针对训练考点二三角形中的重要线段例3如图,CD为△ABC的AB边上的中线,△BCD的周长比△ACD的周长大3cm,BC=8cm,求边AC的长.解:∵CD为△ABC的AB边上的中线,∴AD=BD,∵△BCD的周长比△ACD的周长大7、3cm,∴(BC+BD+CD)-(AC+AD+CD)=3,∴BC-AC=3,∵BC=8,∴AC=5.【变式题】在△ABC中,AB=AC,DB为△ABC的中线,且BD将△ABC周长分为12cm与15cm两部分,求三角形各边长.解:如图,∵DB为△ABC的中线,∴AD=CD,设AD=CD=x,则AB=2x,当x+2x=12,解得x=4.BC+x=15,得BC=11.此时△ABC的三边长为AB=AC=8,BC=11;当x+2x=15,BC+x=12,解得x=5,BC=7,此时△ABC的三边长为AB=AC=10,BC=7.无图时,注意分类讨论例4如图,D是△ABC的8、边BC上任意一点,E、F分别是线段AD、CE的中点,且△ABC的面积为24,求△BEF的面积.解:∵点E是AD的中点,∴S△ABE=S△ABD,S△ACE=S△ADC,∴S△ABE+S△ACE=S△ABC=×24=12,∴S△BCE=S△ABC=×24=12,∵点F是CE的中点,∴S△BEF=S△BCE=×12=6.3.下列四个图形中,线段BE是△ABC的高的是( )归纳三角形的中线分该三角形为面积相等的两部分.针对训练C4.如图,①AD是△ABC的角平分线,则∠_____=∠____=∠_____,②AE是△ABC的中线,则_____=_____=___9、__,③AF是△ABC的高线,则∠_____=∠_____=90°.BADCADCABCEBEBCAFBAFC考点三有关三角形内、外角的计算例5∠A,∠B,∠C是△ABC的三个内角,且分别满足下列条件,求∠A,∠B,∠C中未知角的度数.(1)∠A-∠B=16°,∠C=54°;(2)∠A:∠B:∠C=2:3:4.解:(1)由∠C=54°知∠A+∠B=180°-54°=126°①,又∠A-∠B=16°②,由①②解得∠A=71°,∠B=55°;(2)设∠A=2x,∠B=3x,∠C=4x,则2x+3x+4x=180°,解得x=20°,∴∠A=40°,∠B=60°,∠10、C=80°.若题中没有给出任意角的度数,仅给出数量关
3、或9cm.考点讲练三角形两边之和大于第三边,可以用来判断三条线段能否组成三角形,在运用中一定要注意检查是否任意两边的和都大于第三边,也可以直接检查较小两边之和是否大于第三边.三角形的三边关系在求线段的取值范围以及在证明线段的不等关系中有着重要的作用.1.以线段3、4、x-5为边组成三角形,那么x的取值范围是.64、这时另两边长分别为6,4.综上所述,另两边长为5,5或6,4.【变式题】已知等腰三角形的一边长为4,另一边长为8,则这个等腰三角形的周长为()A.16B.20或16C.20D.12C归纳等腰三角形的底边长不确定时,要分两种情况讨论,还要注意三边是否构成三角形.2.若(a-1)2+5、b-26、=0,则以a,b为边长的等腰三角形的周长为.5针对训练考点二三角形中的重要线段例3如图,CD为△ABC的AB边上的中线,△BCD的周长比△ACD的周长大3cm,BC=8cm,求边AC的长.解:∵CD为△ABC的AB边上的中线,∴AD=BD,∵△BCD的周长比△ACD的周长大7、3cm,∴(BC+BD+CD)-(AC+AD+CD)=3,∴BC-AC=3,∵BC=8,∴AC=5.【变式题】在△ABC中,AB=AC,DB为△ABC的中线,且BD将△ABC周长分为12cm与15cm两部分,求三角形各边长.解:如图,∵DB为△ABC的中线,∴AD=CD,设AD=CD=x,则AB=2x,当x+2x=12,解得x=4.BC+x=15,得BC=11.此时△ABC的三边长为AB=AC=8,BC=11;当x+2x=15,BC+x=12,解得x=5,BC=7,此时△ABC的三边长为AB=AC=10,BC=7.无图时,注意分类讨论例4如图,D是△ABC的8、边BC上任意一点,E、F分别是线段AD、CE的中点,且△ABC的面积为24,求△BEF的面积.解:∵点E是AD的中点,∴S△ABE=S△ABD,S△ACE=S△ADC,∴S△ABE+S△ACE=S△ABC=×24=12,∴S△BCE=S△ABC=×24=12,∵点F是CE的中点,∴S△BEF=S△BCE=×12=6.3.下列四个图形中,线段BE是△ABC的高的是( )归纳三角形的中线分该三角形为面积相等的两部分.针对训练C4.如图,①AD是△ABC的角平分线,则∠_____=∠____=∠_____,②AE是△ABC的中线,则_____=_____=___9、__,③AF是△ABC的高线,则∠_____=∠_____=90°.BADCADCABCEBEBCAFBAFC考点三有关三角形内、外角的计算例5∠A,∠B,∠C是△ABC的三个内角,且分别满足下列条件,求∠A,∠B,∠C中未知角的度数.(1)∠A-∠B=16°,∠C=54°;(2)∠A:∠B:∠C=2:3:4.解:(1)由∠C=54°知∠A+∠B=180°-54°=126°①,又∠A-∠B=16°②,由①②解得∠A=71°,∠B=55°;(2)设∠A=2x,∠B=3x,∠C=4x,则2x+3x+4x=180°,解得x=20°,∴∠A=40°,∠B=60°,∠10、C=80°.若题中没有给出任意角的度数,仅给出数量关
4、这时另两边长分别为6,4.综上所述,另两边长为5,5或6,4.【变式题】已知等腰三角形的一边长为4,另一边长为8,则这个等腰三角形的周长为()A.16B.20或16C.20D.12C归纳等腰三角形的底边长不确定时,要分两种情况讨论,还要注意三边是否构成三角形.2.若(a-1)2+
5、b-2
6、=0,则以a,b为边长的等腰三角形的周长为.5针对训练考点二三角形中的重要线段例3如图,CD为△ABC的AB边上的中线,△BCD的周长比△ACD的周长大3cm,BC=8cm,求边AC的长.解:∵CD为△ABC的AB边上的中线,∴AD=BD,∵△BCD的周长比△ACD的周长大
7、3cm,∴(BC+BD+CD)-(AC+AD+CD)=3,∴BC-AC=3,∵BC=8,∴AC=5.【变式题】在△ABC中,AB=AC,DB为△ABC的中线,且BD将△ABC周长分为12cm与15cm两部分,求三角形各边长.解:如图,∵DB为△ABC的中线,∴AD=CD,设AD=CD=x,则AB=2x,当x+2x=12,解得x=4.BC+x=15,得BC=11.此时△ABC的三边长为AB=AC=8,BC=11;当x+2x=15,BC+x=12,解得x=5,BC=7,此时△ABC的三边长为AB=AC=10,BC=7.无图时,注意分类讨论例4如图,D是△ABC的
8、边BC上任意一点,E、F分别是线段AD、CE的中点,且△ABC的面积为24,求△BEF的面积.解:∵点E是AD的中点,∴S△ABE=S△ABD,S△ACE=S△ADC,∴S△ABE+S△ACE=S△ABC=×24=12,∴S△BCE=S△ABC=×24=12,∵点F是CE的中点,∴S△BEF=S△BCE=×12=6.3.下列四个图形中,线段BE是△ABC的高的是( )归纳三角形的中线分该三角形为面积相等的两部分.针对训练C4.如图,①AD是△ABC的角平分线,则∠_____=∠____=∠_____,②AE是△ABC的中线,则_____=_____=___
9、__,③AF是△ABC的高线,则∠_____=∠_____=90°.BADCADCABCEBEBCAFBAFC考点三有关三角形内、外角的计算例5∠A,∠B,∠C是△ABC的三个内角,且分别满足下列条件,求∠A,∠B,∠C中未知角的度数.(1)∠A-∠B=16°,∠C=54°;(2)∠A:∠B:∠C=2:3:4.解:(1)由∠C=54°知∠A+∠B=180°-54°=126°①,又∠A-∠B=16°②,由①②解得∠A=71°,∠B=55°;(2)设∠A=2x,∠B=3x,∠C=4x,则2x+3x+4x=180°,解得x=20°,∴∠A=40°,∠B=60°,∠
10、C=80°.若题中没有给出任意角的度数,仅给出数量关
此文档下载收益归作者所有