欢迎来到天天文库
浏览记录
ID:52294669
大小:111.38 KB
页数:8页
时间:2020-03-26
《2014考研数学三答案.pdf》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2014考研数学真题答案(数三)1、A2、C3、D4、C5、B6、A7、B8、C3110、-ln211、9、答案:20-Q221212、(e-1)13、[2,2]14、25n15.解:11xx1(t(e2t1)t)dt(t(e2t1)t)dt2(ex1)1111xx2xlimlimlimlimx(e1)x21x21x1xxxln(1)xxx122t1tt(t)1t1e1t21令tlimlim22xxtxt216、解:积分区域D关
2、于yx对称,利用轮对称行,2222xsin(xy)ysin(xy)dxdydxdyxyxyDD22221xsin(xy)ysin(xy)dxdy2xyxyD122sin(xydxdy)2D12122dsin(rrr)drdcos(r)201411212rcos(r)
3、cos(r)dr144111324417、解:x令uecosyzxf(u)ecosyxzxf(u)e(siny)yz
4、zxxcosysiny(4zecosy)exyx2x2xf(u)ecosyf(u)esiny[4f(u)u]e即:f(u)4f(u)u4u4ue[f(u)4f(u)]ue4u4u14u14u两边积分得:ef(u)uedu(ueeC)44114u即:f(u)(uCe)441因为f(0)0,解得C414u11所以f(u)eu1641618、解:n(n1)(n3)xn0(n2)(n4)lim1n(n1)
5、(n3)1收敛半径R==1当x=1时,级数发散,故收敛域为(-1,1)n设S(x)=(n1)(n3)xn0n+11n+2则S(x)=((n3)x)’=((n3)x)',x0n0xn0n+2设S(x)=1(n3)xn0323n+3x3x-2x则S(x)=1(x)’=()'=2n01x(1x)2323x-2x3x-2x3-x所以S(x)=()’=()'=,x0223x(1x)(1x)(1x)3-x又S(0)=3,所以S(x)=,x(-1,1)3(
6、1x)19.解:(I)xhx()gtdt()1aha()01hx'()gx()01hx()单调不减1当xab,时,hx1()0xhx()gtdt()xa2ah'()xgx()120gx()1h'()x02hx()单调不增又ha()022当xab,时,hx2()0(Ⅱ)xxagtdt()px()fugudu()()afudu()aaxxpx'()fxgx()()fa[gtdtgx()]()fx()fa[gtdt()]
7、gx()aa0gx()1xxxagtdt()adtxaaagtdt()x又fx()单调增加xfx()fa[gtdt()]px'()0apx()单调不减又(pa)=0p()b0bbagtdt()即fxgxdx()()afxdx()aa20.123412341234(A)=0111rr1301114r2r30111120304310013
8、12051001r3r201022r2r101023r3r100130013xxx1141x2xx2242cc为任意常数x33x4x33x4x4x41x1y1z1设B=xyz222xyz333x1123411Ax0011102x0120303y1012340
9、Ay1011112y0120303z0123401Az0011102z1120313即123410012341000111010011101012030010431001123410012054123
此文档下载收益归作者所有