资源描述:
《人教版九年级数学上册同步练习:24.1.4圆周角-(3).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、24.1.4圆周角5分钟训练(预习类训练,可用于课前)1.在⊙O中,同弦所对的圆周角()A.相等B.互补C.相等或互补D.都不对思路解析:同弦所对的圆周角有两个不同的度数,它们互补.因此同弦所对的圆周角相等或互补.答案:C2.如图24-1-4-1,在⊙O中,弦AD=弦DC,则图中相等的圆周角的对数有()图24-1-4-1[来源:学优高考网]A.5对B.6对C.7对D.8对思路解析:在同圆或等圆中,判断两个圆周角是否相等,即看它们所对的弧是否相等,因等角对等弧,等弧对等角.先找同弧所对的圆周角:弧AD所对的∠1=∠3;弧DC所对的∠2=∠4;弧BC
2、所对的∠5=∠6;弧AB所对的∠7=∠8.找等弧所对的圆周角,因为弧AC=弧DC,所以∠1=∠4,∠1=∠2,∠4=∠3,∠2=∠3.由上可知,相等的圆周角有8对.[来源:学优高考网gkstk]答案:D3.下列说法正确的是()A.顶点在圆上的角是圆周角B.两边都和圆相交的角是圆周角C.圆心角是圆周角的2倍D.圆周角度数等于它所对圆心角度数的一半思路解析:本题考查圆周角的定义.答案:D4.(2010东北师大附中月考)如图24-1-4-2,已知A、B、C、D、E均在⊙O上,且AC为⊙O的直径,则∠A+∠B+∠C=度.图24-1-4-2思路解析:根据圆
3、周角定义,求得弧的度数是半圆周的一半.答案:90°10分钟训练(强化类训练,可用于课中)1.(山东济南模拟)如图24-1-4-3,把一个量角器放在∠BAC的上面,请你根据量角器的读数判断∠BAC的度数是()[来源:gkstk.Com]A.30°B.60°C.15°D.20°图24-1-4-3图24-1-4-4图24-1-4-5思路解析:根据圆周角与圆心角的关系解答.答案:C2.(2010南京建邺一模)如图24-1-4-4,A、B、C是⊙O上的三点,∠ACB=30°,则∠AOB等于()A.75°B.60°C.45°D.30°思路解析:根据圆周角和圆
4、心角的关系求得.答案:B3.(重庆模拟)如图24-1-4-5,OB、OC是⊙O的半径,A是⊙O上一点,若已知∠B=20°,∠C=30°,则∠A=__________.思路解析:连结AO,则AO=OB,OA=OC,所以∠A=∠B+∠C=20°+30°=50°.答案:50°4.(经典回放)在半径为1的⊙O中,弦AB、AC分别是3和2,则∠BAC的度数是__________.[来源:gkstk.Com]思路解析:如图(1)和图(2),分两种情况,作直径AD,连结BD,易知∠BAD=30°,∠CAO=45°,∴∠BAC=15°或75°.(1)(2)答案:
5、15°或75°5.如图24-1-4-6所示,设P、Q为线段BC上两定点,且BP=CQ,A为BC外一动点,当点A运动到使∠BAP=∠CAQ时,△ABC是什么三角形?试证明你的结论.图24-1-4-6思路分析:利用同圆和等圆中,等弧所对的弦相等.[来源:学优高考网]解:当∠BAP=∠CAQ时,△ABC是等腰三角形.证明:如图,作出△ABC的外接圆,延长AP、AQ交该圆于D、E,连结DB、CE,由∠BAP=∠CAQ,得弧BD=弧CE.从而弧BDE=弧CED,所以BD=CE,∠CBD=∠BCE.又BP=CQ,则△BPD≌△CQE,这时∠D=∠E,由此弧A
6、B=弧AC,故AB=AC,即△ABC是等腰三角形.快乐时光某足球队队员添了一个小孩,所有队友被邀请参加洗礼,来到教堂.突然孩子从母亲手中滑落,守门员果断地扑出,在离地几厘米的地方接住了孩子.大伙儿鼓掌欢呼,守门员习惯地拍了两下,接着熟练地大脚开出.30分钟训练(巩固类训练,可用于课后)1.如图24-1-4-7,已知⊙O中,AB为直径,AB=10cm,弦AC=6cm,∠ACB的平分线交⊙O于D,求BC、AD和BD的长.图24-1-4-7思路分析:已知条件中若有直径,则利用圆周角定理的推论得到直角三角形,然后利用直角三角形的性质解题.解:∵AB是直径
7、,∴∠ACB=∠ADB=90°.在Rt△ACB中,BC===8.∵CD平分∠ACB,∴弧AD=弧BD.∴AD=BD.在Rt△ADB中,AD=BD=AB=5(cm).[来源:学优高考网gkstk]2.用直角钢尺检查某一工件是否恰好是半圆环形,根据图24-1-4-8所表示的情形,四个工件哪一个肯定是半圆环形?()图24-1-4-9思路解析:本题考查圆周角定理的推论及圆周角定义在实际生产中的应用.认真观察图形,可得只有B符合定理的推论.实际问题应读懂题意,看懂图形,并将实际问题转化成数学模型.A和C中的直角显然不是圆周角,因此不正确,D中的直角只满足圆
8、周角的一个特征,也不是圆周角,因而不能判断是否为半圆形.选B.答案:B3.(辽宁大连模拟)如图24-1-4-9,A、C、B是⊙O上三点,