欢迎来到天天文库
浏览记录
ID:51271952
大小:221.50 KB
页数:3页
时间:2020-03-20
《函数的最值教案.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第二节函数的最大(小)值教学目的:(1)理解函数的最大(小)值及其几何意义;(2)学会运用函数图象理解和研究函数的性质;教学重点:函数的最大(小)值及其几何意义.教学难点:利用函数的单调性求函数的最大(小)值.教学过程:一、引入课题画出下列函数的图象,并根据图象解答下列问题:说出y=f(x)的单调区间,以及在各单调区间上的单调性;指出图象的最高点或最低点,并说明它能体现函数的什么特征?(1)(2)(3)(4)二、新课教学(一)函数最大(小)值定义1.最大值一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任
2、意的x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0)=M那么,称M是函数y=f(x)的最大值(MaximumValue).思考:仿照函数最大值的定义,给出函数y=f(x)的最小值(MinimumValue)的定义.(学生活动)注意:函数最大(小)首先应该是某一个函数值,即存在x0∈I,使得f(x0)=M;函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x∈I,都有f(x)≤M(f(x)≥M).2.利用函数单调性的判断函数的最大(小)值的方法利用二次函数的性质(配方法)求函数的最大(小)值利用图象求函数的最
3、大(小)值利用函数单调性的判断函数的最大(小)值如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);(二)典型例题例1:如图为函数,的图象,指出它的最大值、最小值及单调区间.【解】由图可以知道:当时,该函数取得最小值;当时,函数取得最大值为;函数的单调递增区间有2个:和;该函数的单调递减区间有三个:、和例2:求下列函数的最小值:(1);(2)
4、,.【解】(1)∴当时,;(2)因为函数在上是单调减函数,所以当时函数取得最小值为.例3.(教材P36例3)利用二次函数的性质确定函数的最大(小)值.解:(略)25说明:对于具有实际背景的问题,首先要仔细审清题意,适当设出变量,建立适当的函数模型,然后利用二次函数的性质或利用图象确定函数的最大(小)值.巩固练习:如图,把截面半径为25cm的圆形木头锯成矩形木料,如果矩形一边长为x,面积为y试将y表示成x的函数,并画出函数的大致图象,并判断怎样锯才能使得截面面积最大?例4.(新题讲解)旅馆定价一个星级旅馆有150个标准房,经过一
5、段时间的经营,经理得到一些定价和住房率的数据如下:房价(元)住房率(%)16055140651207510085欲使每天的的营业额最高,应如何定价?解:根据已知数据,可假设该客房的最高价为160元,并假设在各价位之间,房价与住房率之间存在线性关系.设为旅馆一天的客房总收入,为与房价160相比降低的房价,因此当房价为元时,住房率为,于是得=150··.由于≤1,可知0≤≤90.因此问题转化为:当0≤≤90时,求的最大值的问题.将的两边同除以一个常数0.75,得1=-2+50+17600.由于二次函数1在=25时取得最大值,可知也
6、在=25时取得最大值,此时房价定位应是160-25=135(元),相应的住房率为67.5%,最大住房总收入为13668.75(元).所以该客房定价应为135元.(当然为了便于管理,定价140元也是比较合理的)例5.(教材P37例4)求函数在区间[2,6]上的最大值和最小值.解:(略)注意:利用函数的单调性求函数的最大(小)值的方法与格式.巩固练习:(教材P38练习4)例6:求,的最小值.【解】,其图象是开口向上,对称轴为的抛物线.①若,则在上是增函数,∴;②若,则;③若,则在上是减函数,∴的最小值不存在.点评:含参数问题的最值
7、,一般情况下,我们先将参数看成是已知数,但不能解了我们再进行讨论!例7:已知二次函数在上有最大值4,求实数的值.解:函数的对称轴为,当时,则当时函数取最大值,即即;当时,则当时函数取得最大值,即,即所以,或。三、归纳小结,强化思想函数的单调性一般是先根据图象判断,再利用定义证明.画函数图象通常借助计算机,求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分五步:取值→作差→变形→定号→下结论四、作业布置书面作业:课本P45习题(A组)第6、7、8题.ABCD提高作业:快艇和轮船分别从A地和C地同时开出,如下图,各沿箭头
8、方向航行,快艇和轮船的速度分别是45km/h和15km/h,已知AC=150km,经过多少时间后,快艇和轮船之间的距离最短?
此文档下载收益归作者所有