勾股定理的实际应用ppt课件.ppt

勾股定理的实际应用ppt课件.ppt

ID:50760365

大小:1.86 MB

页数:28页

时间:2020-03-13

勾股定理的实际应用ppt课件.ppt_第1页
勾股定理的实际应用ppt课件.ppt_第2页
勾股定理的实际应用ppt课件.ppt_第3页
勾股定理的实际应用ppt课件.ppt_第4页
勾股定理的实际应用ppt课件.ppt_第5页
资源描述:

《勾股定理的实际应用ppt课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、18.1勾股定理----实际应用1一回顾交流1已知直角三角形ABC的三边为a,b,c,∠C=90°,则a,b,c三者之间的关系是。2矩形的一边长是5,对角线是13,则它的面积是。602结论:S1+S2+S3+S4=S5+S6=S7y=0二.复习面积法证明勾股定理3探索1、一个门框的尺寸如图所示,一块长3m、宽2.2m的薄木板能否从门框内通过?为什么?ABCD1m2m解:连接AC,在Rt△ABC中根据勾股定理:4学生活动算趣题:“执竿进屋”笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭。有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足

2、。借问竿长多少数,谁人算出我佩服。5探索2如图,一架长为10m的梯子AB斜靠在墙上,梯子的顶端距地面的垂直距离为8m.如果梯子的顶端下滑1m,那么它的底端是否也滑动1m?ABC所以梯子的顶端下滑1m,它的底端不是滑动1m.108AB6如图,一个三米长的梯子AB,斜靠在一竖直的墙AO上,这时AO的距离为2.5m,如果梯子的顶端A沿墙下滑0.5m,那么梯子底端B也外移0.5m吗?思考ABCDO7小明想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,求旗杆的高度。ABC58假期中,王强和同学到某海岛上去玩探宝游

3、戏,按照探宝图,他们登陆后先往东走8千米,又往北走2千米,遇到障碍后又往西走3千米,在折向北走到6千米处往东一拐,仅走1千米就找到宝藏,问登陆点A到宝藏埋藏点B的距离是多少千米?AB82361C解:过B点向南作垂线,连结AB,可得Rt△ABC由题意可知:AC=6千米,BC=8千米根据勾股定理AB2=AC2+BC2=62+82=100∴AB=10千米9如图,大风将一根木制旗杆吹裂,随时都可能倒下,十分危急。接警后“119”迅速赶到现场,并决定从断裂处将旗杆折断。现在需要划出一个安全警戒区域,那么你能确定这个安全区域的半径至少是多少米吗?5m18m?y=0乘风破浪1

4、0一种盛饮料的圆柱形杯(如图),测得内部底面直径为5㎝,高为12㎝,吸管放进杯里,杯口外面露出5㎝,问吸管要做多长?ABC11如图,将一根25㎝长的细木棒放入长、宽、高分别为8㎝、6㎝和10㎝的长方体无盖盒子中,则细木棒露在盒外面的最短长度是多少㎝.(保留1位小数)ABCD12AB我怎么走会最近呢?有一个圆柱,它的高等于12厘米,底面半径等于3厘米,在圆柱下底面上的A点有一只蚂蚁,它想从点A爬到点B,蚂蚁沿着圆柱侧面爬行的最短路程是多少?(π的值取3)13BA高12cmBA长18cm(π的值取3)9cm∵AB2=92+122=81+144=225=∴AB=15(

5、cm)蚂蚁爬行的最短路程是15厘米.15214如图所示,现在有长方体木块的长3厘米,宽4厘米,高24厘米。一只蜘蛛潜伏在一个顶点A处,一只苍蝇在这个长方体上和蜘蛛相对的顶点B处,蜘蛛急于想捉住苍蝇,沿着长方体的表面向上爬,它要从点A爬到点B处,有无数条路线,它们有长有短,蜘蛛究竟应该沿着怎样的路线爬上去,所走的路程会最短。你能帮蜘蛛找到最短路径吗?ACDBGFH15如图,是一个三级台阶,它的每一级的长、宽和高分别等于36cm,10cm和6cm,A和B是这个台阶的两个相对的端点,A点上有一只小虫子,想到B点去吃可口的食物。请你想一想,这只小虫子从A点出发,沿着台阶

6、面爬到B点,最短线路是多少?BAABC..16聪明的葛藤葛藤是一种刁钻的植物,它自己腰杆不硬,为了得到阳光的沐浴,常常会选择高大的树木为依托,缠绕其树干盘旋而上。如图(1)所示。葛藤又是一种聪明的植物,它绕树干攀升的路线,总是沿着最短路径——螺旋线前进的。若将树干的侧面展开成一个平面,如图(2),可清楚的看出葛藤在这个平面上是沿直线上升的。(1)(2)数学奇闻17有一棵树直立在地上,树高2丈,粗3尺,有一根葛藤从树根处缠绕而上,缠绕7周到达树顶,请问这根葛藤条有多长?(1丈等于10尺)ABC20尺3×7=21(尺)聪明的葛藤18如图,小颍同学折叠一个直角三角形的

7、纸片,使A与B重合,折痕为DE,若已知AC=10cm,BC=6cm,你能求出CE的长吗?CABDE解:连结BE由已知可知:DE是AB的中垂线,∴AE=BE在Rt△ABC中,根据勾股定理:设AE=xcm,则EC=(10-x)cmBE2=BC2+EC2x2=62+(10-x)2解得x=6.8∴EC=10-6.8=3.2cm19如图,有两棵树,一棵高8m,另一棵高2m,两树相距8m,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了()A.7mB.8mC.9mD.10m8m2m8mABC20如图所示,要修一个种植蔬菜的育苗大棚,棚宽a=2m,高b=1.5m,长d=12

8、m,则修盖在顶上的塑料薄

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。