相似三角形习题精讲及答案.doc

相似三角形习题精讲及答案.doc

ID:50291305

大小:172.25 KB

页数:9页

时间:2020-03-05

相似三角形习题精讲及答案.doc_第1页
相似三角形习题精讲及答案.doc_第2页
相似三角形习题精讲及答案.doc_第3页
相似三角形习题精讲及答案.doc_第4页
相似三角形习题精讲及答案.doc_第5页
资源描述:

《相似三角形习题精讲及答案.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、8每个学生都应该用的相似三角形习题精讲及答案相似三角形是初中几何的重要内容,包括相似三角形的性质、判定定理及其应用,是中考必考内容,以相似三角形为背景的综合题是常见的热点题型,所以掌握好相似三角形的基础知识至关重要,本讲就如何判定三角形相似,以及应用相似三角形的判定、性质来解决与比例线段有关的计算和证明的问题进行探索。一、如何证明三角形相似例1、如图:点G在平行四边形ABCD的边DC的延长线上,AG交BC、BD于点E、F,则△AGD∽∽。分析:关键在找“角相等”,除已知条件中已明确给出的以外,还应结合具体的图形,利用公共角、

2、对顶角及由平行线产生的一系列相等的角。本例除公共角∠G外,由BC∥AD可得∠1=∠2,所以△AGD∽△EGC。再∠1=∠2(对顶角),由AB∥DG可得∠4=∠G,所以△EGC∽△EAB。评注:(1)证明三角形相似的首选方法是“两个角对应相等的两个三角形相似”。(2)找到两个三角形中有两对角对应相等,便可按对应顶点的顺序准确地把这一对相似三角形记下来。例2、已知△ABC中,AB=AC,∠A=36°,BD是角平分线,求证:△ABC∽△BCD分析:证明相似三角形应先找相等的角,显然∠C是公共角,而另一组相等的角则可以通过计算来求得

3、。借助于计算也是一种常用的方法。证明:∵∠A=36°,△ABC是等腰三角形,∴∠ABC=∠C=72°又BD平分∠ABC,则∠DBC=36°在△ABC和△BCD中,∠C为公共角,∠A=∠DBC=36°∴△ABC∽△BCD例3:已知,如图,D为△ABC内一点连结ED、AD,以BC为边在△ABC外作∠CBE=∠ABD,∠BCE=∠BAD求证:△DBE∽△ABC“超级学习笔记”8每个学生都应该用的分析:由已知条件∠ABD=∠CBE,∠DBC公用。所以∠DBE=∠ABC,要证的△DBE和△ABC,有一对角相等,要证两个三角形相似,或者

4、再找一对角相等,或者找夹这个角的两边对应成比例。从已知条件中可看到△CBE∽△ABD,这样既有相等的角,又有成比例的线段,问题就可以得到解决。证明:在△CBE和△ABD中,∠CBE=∠ABD,∠BCE=∠BAD∴△CBE∽△ABD∴=即:=在△DBE和△ABC中∠CBE=∠ABD,∠DBC公用∴∠CBE+∠DBC=∠ABD+∠DBC∴∠DBE=∠ABC且=∴△DBE∽△ABC“超级学习笔记”8每个学生都应该用的例4、矩形ABCD中,BC=3AB,E、F,是BC边的三等分点,连结AE、AF、AC,问图中是否存在非全等的相似三角

5、形?请证明你的结论。分析:本题要找出相似三角形,那么如何寻找相似三角形呢?下面我们来看一看相似三角形的几种基本图形:(1)如图:称为“平行线型”的相似三角形(2)如图:其中∠1=∠2,则△ADE∽△ABC称为“相交线型”的相似三角形。(3)如图:∠1=∠2,∠B=∠D,则△ADE∽△ABC,称为“旋转型”的相似三角形。观察本题的图形,如果存在相似三角形只可能是“相交线型”的相似三角形,及△EAF与△ECA解:设AB=a,则BE=EF=FC=3a,由勾股定理可求得AE=,在△EAF与△ECA中,∠AEF为公共角,且所以△EAF

6、∽△ECA(两边对应成比例且夹角相等的两个三角形相似)注:以上两例中都用了相似三角形的判定定理2,该定理的灵活应用是教学上的难点所在,应注重加强训练。二、如何应用相似三角形证明比例式和乘积式例1、△“超级学习笔记”8每个学生都应该用的ABC中,在AC上截取AD,在CB延长线上截取BE,使AD=BE,求证:DFAC=BCFE分析:证明乘积式通常是将乘积式变形为比例式及DF:FE=BC:AC,再利用相似三角形或平行线的性质进行证明:证明:过D点作DK∥AB,交BC于K,∵DK∥AB,∴DF:FE=BK:BE又∵AD=BE,∴DF

7、:FE=BK:AD,而BK:AD=BC:AC即DF:FE=BC:AC,∴DFAC=BCFE例2:已知:如图,在△ABC中,∠BAC=900,M是BC的中点,DM⊥BC于点E,交BA的延长线于点D。求证:(1)MA2=MDME;(2)证明:(1)∵∠BAC=900,M是BC的中点,∴MA=MC,∠1=∠C,∵DM⊥BC,∴∠C=∠D=900-∠B,∴∠1=∠D,∵∠2=∠2,∴△MAE∽△MDA,∴,∴MA2=MDME,(2)∵△MAE∽△MDA,∴,∴评注:(1)通过一对相似三角形来证明比例线段,是证比例线段的一种基本方法。

8、本例第(1)小题证明MA2=MDME,经常可以把其中的MA看作一对相似三角形的公共边,再去寻觅与确定需证相似的三角形。“超级学习笔记”8每个学生都应该用的(2)本例的关键是证明△MAE∽△MDA,这种具有特殊关系(有一个公共角和一条公共边)的三角形的相似,在解题中应用很多,应从下面两个方面

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。