欢迎来到天天文库
浏览记录
ID:50103700
大小:413.50 KB
页数:18页
时间:2020-03-04
《圆的复习与回顾.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第三章回顾与思考(第1课时)靖远县第七中学李红军员一、知识结构圆基本概念与性质与圆有关的位置关系与圆有关的计算定义对称性点与圆的位置关系弧长确定圆的条件圆周角与圆心角的关系垂径定理圆心角、弧、弦的关系直线与圆的位置关系圆的内接四边形扇形面积切线长定理内接正多边形圆是对称图形,任何一条直径所在的直线都是它的;圆又是对称图形,是它的对称中心.二、知识点回顾圆的对称性轴对称轴中心圆心O垂径定理垂直于弦的直径平分,并且平分;平分弦(不是直径)的垂直于弦,并且平分.·OABDE这条弦弦所对的两条弧直径弦所对的两条弧∵CD是直径,∴AE=BE,⌒⌒AC=BC,⌒⌒AD=B
2、D.CD⊥AB,C证明线段或弧相等的重要定理在同圆或等圆中,如果两个,两条,两条,中有一组量,那么它们所对应的其余各组量都分别.圆心角、弧、弦的关系·OABA′B′在同圆或等圆中,相等的圆心角所对的相等,所对的相等。弧弦圆心角弧弦相等相等同弧或等弧所对的圆周角,都等于它所对弧的圆心角.圆周角定理·ACBO·AC1OC2C3B相等度数的一半直径所对的圆周角是,90°所对的弦是.直角直径点与圆的位置关系①dr,②dr③dr.2.直线与圆的位置关系①dr,②dr③dr.与圆有关的位置关系r·OAPPP·lOrll点P在圆外点P在圆上点P在圆内>=<直线和⊙O相交直线
3、和⊙O相切直线和⊙O相离<=>圆的切线的性质圆的切线过切点的半径;经过的外端,并且这条的直线是圆的切线.·OlA∵l是⊙O的切线,切点为A,OA是⊙O的直径,∴OA⊥l圆的切线的判定垂直于·OAl半径垂直于半径∵OA是⊙O的半径,l⊥OA于A,∴l是⊙O的切线.切线长定理APO。B从圆外一点所画的圆的两条切线的长相等。∵PA、PB分别切⊙O于A、B,∴PA=PB圆的内接多边形ABCD圆的内接四边形对角互补圆的内接正多边形弧长与扇形面积的计算·On°1°n°的圆心角所对的弧长计算公式为.n°的圆心角所在的扇形面积为。三、精选精练1.如图,⊙O是△ABC的外接圆,
4、已知∠ACO=30°,∠B=_______.『要点』通过辅助线的添加,建立同弧所对的圆周角及圆心角或直径所对的圆周角,实现所求对象的转换。60°BAOCBAOCD法一:连接OA法二:延长CO交⊙O于D,连接DA2.如图2,在⊙O中,弦AB=1.8cm,圆周角∠ACB=30°,则⊙O的直径等于______cm.BCOAD3.6『要点』当所求对象非显性存在时,可先将其作出,并寻找与之相关的已知条件连接AO,并延长交⊙O于D,连接BD,∴∠D=∠C=30°,∵AD是直径,∴∠B=90°,3、已知:如图,AB是⊙O的弦,半径OC、OD分别交AB于点E、F,且AE=BF
5、,请你找出线段OE与OF的数量关系,并给予证明。『要点』图形呈轴对称性时,可利用垂径定理求解,也可利用半径和弦组成的等腰三角形的对称性求解OABCDEFOABCDEF4、某宾馆大堂要铺设圆环形地毯,如图,工人王师傅只测量了与小圆相切的大圆的弦AB的长就计算出了圆环的面积,王师傅是怎样算的?请你用圆的相关知识加以解释。『要点』遇到相切问题经常需要作出过切点的半径,垂径定理往往需要建立的直角三角形,并利用勾股定理求解三边。OABC连接圆心O与切点C,连接AO,∵OC⊥AB,∴在△AOC中,AO2-OC2=AC2,∴S圆环面积=π(AO2-OC2)=πAC2,60°
6、『要点』过圆外一点可作两条与圆相切的直线,该点与两切点的距离相等,且OO’平分∠AOB5、如图,过圆外一点O作⊙O′的两条切线OA、OB,A、B是切点,且OO’圆O半径长两倍,则∠AOB=______OABO’6、如图,Rt△ABC内接于⊙O,∠A=30°,延长斜边AB到D,使BD等于⊙O半径,求证:DC是⊙O切线。『要点』求证圆的切线问题除了需要作出过切点的半径,还要注意观察图形的特征,例如包涵的特殊三角形的性质。OABCD证明:连OC,如图,∵∠A=30°,OA=OC,∴∠COB=60°,∵△COB为等边三角形,∴BC=BO,而BD等于⊙O半径,
7、∴BC=BO=BD,∴△OCD为直角三角形,即∠OCD=90°,所以DC是⊙O切线.四、课堂小结1.本章知识结构和重点内容;2.观察——猜想——关联;3.转化的数学思想在解决圆的问题时的相关应用。五、课后作业完成课本复习题知识技能1-14题.
此文档下载收益归作者所有