欢迎来到天天文库
浏览记录
ID:49448361
大小:1.40 MB
页数:19页
时间:2020-03-01
《2019年全国1卷理科数学高考真题与答案解析,详细答案,word可编辑.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2019年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,则=A.B.C.D.2.设复数z满足,z在复平面内对应的点为(x,y),则A.B.C.D.3.已知,
2、则A.B.C.D.4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是A.165cmB.175cmC.185cmD.190cm5.函数f(x)=在的图像大致为A.B.C.D.6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在
3、所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A.B.C.D.7.已知非零向量a,b满足,且b,则a与b的夹角为A.B.C.D.8.如图是求的程序框图,图中空白框中应填入A.A=B.A=C.A=D.A=9.记为等差数列的前n项和.已知,则A.B.C.D.10.已知椭圆C的焦点为,过F2的直线与C交于A,B两点.若,,则C的方程为A.B.C.D.11.关于函数有下述四个结论:①f(x)是偶函数②f(x)在区间(,)单调递增③f(x)在有4个零点④f(x)的最大值为2其中所有正确结论的编号是A.①②④B.②④C.①④D.①③12.已知三棱锥P−ABC的
4、四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.曲线在点处的切线方程为____________.14.记Sn为等比数列{an}的前n项和.若,则S5=____________.15.甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,
5、则甲队以4∶1获胜的概率是____________.16.已知双曲线C:的左、右焦点分别为F1,F2,过F1的直线与C的两条渐近线分别交于A,B两点.若,,则C的离心率为____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。17.(12分)的内角A,B,C的对边分别为a,b,c,设.(1)求A;(2)若,求sinC.18.(12分)如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠
6、BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求二面角A−MA1−N的正弦值.19.(12分)已知抛物线C:y2=3x的焦点为F,斜率为的直线l与C的交点为A,B,与x轴的交点为P.(1)若
7、AF
8、+
9、BF
10、=4,求l的方程;(2)若,求
11、AB
12、.20.(12分)已知函数,为的导数.证明:(1)在区间存在唯一极大值点;(2)有且仅有2个零点.21.(12分)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随
13、机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求的分布列;(2)若甲药、乙药在试验开始时都赋予4分,表示“甲药的累计得分为时,最终认为甲药比乙药更有效”的概率,则,
14、,,其中,,.假设,.(i)证明:为等比数列;(ii)求,并根据的值解释这种试验
此文档下载收益归作者所有