欢迎来到天天文库
浏览记录
ID:49221738
大小:570.50 KB
页数:14页
时间:2020-02-02
《工科线性代数1_2.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第二节全排列、逆序数线性代数一、概念的引入引例用1、2、3三个数字,可以组成多少个没有重复数字的三位数?解123123百位3种放法十位1231个位1232种放法1种放法种放法.共有二、全排列及其逆序数问题定义把个不同的元素排成一列,叫做这个元素的全排列(或排列).个不同的元素的所有排列的种数,通常用表示.由引例同理在一个排列中,若数则称这两个数组成一个逆序.例如排列32514中,定义我们规定各元素之间有一个标准次序,n个不同的自然数,规定由小到大为标准次序.排列的逆序数32514逆序逆序逆序定义一个排列中所有逆序的总数称为此排列的逆序数.例如排列32514中,32514逆序数为31故此
2、排列的逆序数为3+1+0+1+0=5.计算排列逆序数的方法方法1分别计算出排在前面比它大的数码之和即分别算出这个元素的逆序数,这个元素的逆序数的总和即为所求排列的逆序数.逆序数为奇数的排列称为奇排列;逆序数为偶数的排列称为偶排列.排列的奇偶性分别计算出排列中每个元素前面比它大的数码个数之和,即算出排列中每个元素的逆序数,这每个元素的逆序数之总和即为所求排列的逆序数.方法2例1求排列32514的逆序数.解在排列32514中,3排在首位,逆序数为0;2的前面比2大的数只有一个3,故逆序数为1;32514于是排列32514的逆序数为5的前面没有比5大的数,其逆序数为0;1的前面比1大的数有3
3、个,故逆序数为3;4的前面比4大的数有1个,故逆序数为1;例2计算下列排列的逆序数,并讨论它们的奇偶性.解此排列为偶排列.解当时为偶排列;当时为奇排列.解当为偶数时,排列为偶排列,当为奇数时,排列为奇排列.2排列具有奇偶性.3计算排列逆序数常用的方法有2种.1个不同的元素的所有排列种数为三、小结思考题分别用两种方法求排列16352487的逆序数.思考题解答解用方法116352487用方法2
此文档下载收益归作者所有