欢迎来到天天文库
浏览记录
ID:48871861
大小:351.85 KB
页数:5页
时间:2020-02-28
《一次函数图象的平移规律.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、一次函数图象平移的探究我们知道,一次函数y=kx+b的图象是一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx平移∣b∣个单位长度得到(当b>0时,向上平移;当b<0时,向上平移).例如,将直线y=-x向上平移3个单位长度就得到直线y=-x+3,将直线y=-x向下平移1个单位长度就可以得到直线y=-x-1.需要注意的是,函数图象的平移,既可以上下平移,也可以左右平移.这里所说的平移,是指函数图象的上下平移,而非左右平移.以上平移比较简单,因为它是对最简单的一次函数即正比例函数进行平移.对于一个一般形式的一次函数图象又该怎样进行平移呢?【探究一】函数图像的上下平移我们
2、先从一些具体的函数关系开始.问题1 已知直线l:y=2x-3,将直线l向上平移2个单位长度得到直线l1,求直线l1的解析式.分析:根据“两直线平行,对应函数的一次项系数相等”,可设直线l1的解析式为y=2x+b,由于直线l1的解析式中只有一个未知数,因此再需一个条件即可.怎样得到这个条件呢?注意到直线l1与两条坐标轴分别交于两点,而直线l1与y轴的交点易求,这样就得到一个条件,于是直线l1的解析式可求.解:设直线l1的解析式为y=2x+b,直线l1交y轴于点(0,-3),向上平移2个单位长度后变为(0,-1).把(0,-1)坐标代入y=2x+b,得b=-1,从而直线l1的解析式
3、为y=2x-1.问题2 已知直线l:y=2x-3,将直线l向下平移3个单位长度得到直线l2,求直线l2的解析式.答案:直线l2的解析式为y=2x-6.(解答过程请同学们自己完成)对比直线l和直线l1、直线l2的解析式可以发现:将直线l:y=2x-3向上平移2个单位长度得到直线l1的解析式为:y=2x-3+2;将直线l:y=2x-3向下平移3个单位长度得到直线l2的解析式为:y=2x-3-3.(此时你有什么新发现?)我们再来探究一般情况.问题3 已知直线l:y=kx+b,将直线l向上平移m个单位长度得到直线l1,求直线l1的解析式.简解:设直线l1的解析式为y=kx+p,直线l交
4、y轴于点(0,b),向上平移m个单位长度后变为(0,b+m),把(0,b+m)坐标代入l1的解析式可得,p=b+m.从而直线l1的解析式为y=kx+b+m.问题4 已知直线l:y=kx+b,将直线l向下平移m个单位长度得到直线l2,求直线l2的解析式.答案:直线l2的解析式为y=kx+b-m.(解答过程请同学们自己完成)由此我们得到:直线y=kx+b向上平移m(m为正)个单位长度得到直线y=kx+b+m,直线y=kx+b向下平移m(m为正)个单位长度得到直线y=kx+b-m,这是直线直线y=kx+b上下(或沿y轴)平移的规律.这个规律可以简记为:函数值:上加下减以上我们探究了直
5、线y=kx+b的上下(或沿y轴)的平移,如果直线y=kx+b不是上下(或沿y轴)平移,而是左右(或沿x轴)平移,又该怎样进行平移呢?【探究二】函数图像的左右平移问题5 已知直线l:y=3x-12,将直线l向左平移5个单位长度得到直线l1,求直线l1的解析式.简解:根据“两直线平行,对应函数的一次项系数k相等”,可设直线l1的解析式为y=3x+b,直线l交x轴于点(4,0),向左平移5个单位长度后变为(-1,0).把(-1,0)坐标代入y=3x+b,得b=3,从而直线l1的解析式为y=3x+3.问题6 已知直线l:y=3x-12,将直线l向右平移3个单位长度得到直线l2,求直线l
6、2的解析式.答案:直线l2的解析式为y=3x-21.(解答过程请同学们自己完成) 直接观察结果,很难发现其中的一般规律,那么我们尝试着探究一般情况.问题7 已知直线l:y=kx+b,将直线l向左平移n个单位长度得到直线l1,求直线l1的解析式.简解:设直线l1的解析式为y=kx+p,直线l交x轴于点,向左平移n个单位长度后变为,把坐标代入l1的解析式可得,p=kn+b.从而直线l1的解析式为y=kx+km+b,即y=k(x+m)+b.问题8 已知直线l:y=kx+b,将直线l向右平移n个单位长度得到直线l2,求直线l2的解析式.答案:直线l2的解析式为y=k(x-m)+b.(解
7、答过程请同学们自己完成)通过对于一般情况的研究,我可以发现一些变化的规律,现在我们用刚才的具体的函数关系来验证一下我们得到的规律.将直线l:y=3x-12向左平移5个单位长度得到直线l1的解析式为:y=3x+3,这个函数关系可以改写为:y=3(x+5)-12;将直线l:y=3x-12向右平移3个单位长度得到直线l2的解析式为:y=3x-21,这个函数关系可以改写为:y=3(x-3)-12.由此我们得到:直线y=kx+b向左平移n(n为正)个单位长度得到直线y=k(x+n)+b,直线y=kx+
此文档下载收益归作者所有