江苏专用2019高考数学二轮复习专题六第2讲数列的通项与求和学案理.doc

江苏专用2019高考数学二轮复习专题六第2讲数列的通项与求和学案理.doc

ID:48230580

大小:252.80 KB

页数:13页

时间:2019-11-18

江苏专用2019高考数学二轮复习专题六第2讲数列的通项与求和学案理.doc_第1页
江苏专用2019高考数学二轮复习专题六第2讲数列的通项与求和学案理.doc_第2页
江苏专用2019高考数学二轮复习专题六第2讲数列的通项与求和学案理.doc_第3页
江苏专用2019高考数学二轮复习专题六第2讲数列的通项与求和学案理.doc_第4页
江苏专用2019高考数学二轮复习专题六第2讲数列的通项与求和学案理.doc_第5页
资源描述:

《江苏专用2019高考数学二轮复习专题六第2讲数列的通项与求和学案理.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第2讲 数列的通项与求和高考定位 高考对本内容的考查主要有:(1)数列的通项公式求法,常在解答题的第(1)问出现,难度中档以下;(2)求数列的前n项和的几种方法,一般两种题型都有涉及,是数列命题的重点.真题感悟1.(2015·江苏卷)设数列{an}满足a1=1,且an+1-an=n+1(n∈N*),则数列前10项的和为________.解析 ∵a1=1,an+1-an=n+1,∴a2-a1=2,a3-a2=3,…,an-an-1=n,将以上n-1个式子相加得an-a1=2+3+…+n=,即an=,令bn=,故bn==2,

2、故S10=b1+b2+…+b10=2=.答案 2.(2018·江苏卷)已知集合A={x

3、x=2n-1,n∈N*},B={x

4、x=2n,n∈N*}.将A∪B的所有元素从小到大依次排列构成一个数列{an}.记Sn为数列{an}的前n项和,则使得Sn>12an+1成立的n的最小值为________.解析 所有的正奇数和2n(n∈N*)按照从小到大的顺序排列构成{an},在数列{an}中,25前面有16个正奇数,即a21=25,a38=26.当n=1时,S1=1<12a2=24,不符合题意;当n=2时,S2=3<12a3=36,

5、不符合题意;当n=3时,S3=6<12a4=48,不符合题意;当n=4时,S4=10<12a5=60,不符合题意;…;当n=26时,S26=+=441+62=503<12a27=516,不符合题意;当n=27时,S27=+=484+62=546>12a28=540,符合题意.故使得Sn>12an+1成立的n的最小值为27.答案 27考点整合1.求通项公式的常见类型(1)观察法:利用递推关系写出前几项,根据前几项的特点观察、归纳、猜想出an的表达式,然后用数学归纳法证明.(2)利用前n项和与通项的关系an=(3)公式法:利

6、用等差(比)数列求通项公式.(4)累加法:在已知数列{an}中,满足an+1=an+f(n),把原递推公式转化为an+1-an=f(n),再利用累加法(逐差相加法)求解.(5)叠乘法:在已知数列{an}中,满足an+1=f(n)an,把原递推公式转化为=f(n),再利用叠乘法(逐商相乘法)求解.(6)构造等比数列法:在已知数列{an}中,满足an+1=pan+q(其中p,q均为常数,pq(p-1)≠0)先用待定系数法把原递推公式转化为an+1-t=p(an-t),其中t=,再利用换元法转化为等比数列求解.2.数列求和(1

7、)分组转化法:一个数列既不是等差数列,也不是等比数列,若将这个数列适当拆开,重新组合,就会变成几个可以求和的部分,分别求和,然后再合并.(2)错位相减法:主要用于求数列{an·bn}的前n项和,其中{an},{bn}分别是等差数列和等比数列.(3)裂项相消法:即将数列的通项分成两个式子的代数差的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如(其中{an}是各项均不为零的等差数列,c为常数)的数列.热点一 数列的通项公式[考法1] 由Sn与an的关系求an【例1-1】(1)(2018·全国Ⅰ卷)记Sn为数列{

8、an}的前n项和.若Sn=2an+1,则S6=________.解析 法一 因为Sn=2an+1,所以当n=1时,a1=2a1+1,解得a1=-1;当n=2时,a1+a2=2a2+1,解得a2=-2;当n=3时,a1+a2+a3=2a3+1,解得a3=-4;当n=4时,a1+a2+a3+a4=2a4+1,解得a4=-8;当n=5时,a1+a2+a3+a4+a5=2a5+1,解得a5=-16;当n=6时,a1+a2+a3+a4+a5+a6=2a6+1,解得a6=-32.所以S6=-1-2-4-8-16-32=-63.法二 

9、因为Sn=2an+1,所以当n=1时,a1=2a1+1,解得a1=-1,当n≥2时,an=Sn-Sn-1=2an+1-(2an-1+1),所以an=2an-1,所以数列{an}是以-1为首项,2为公比的等比数列,所以an=-2n-1,所以S6==-63.答案 -63(2)设数列{an}的前n项和为Sn,已知a1=1,a2=2,且an+2=3Sn-Sn+1+3,n∈N*.证明:an+2=3an,并求an.解 由条件,对任意n∈N*,有an+2=3Sn-Sn+1+3,因而对任意n∈N*,n≥2,有an+1=3Sn-1-Sn+

10、3.两式相减,得an+2-an+1=3an-an+1,即an+2=3an,n≥2.又a1=1,a2=2,所以a3=3S1-S2+3=3a1-(a1+a2)+3=3a1,故对一切n∈N*,an+2=3an.又∵an≠0,所以=3.于是数列{a2n-1}是首项a1=1,公比为3的等比数列;数列{a2n}是首项a2=2,公

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。