欢迎来到天天文库
浏览记录
ID:46933482
大小:822.00 KB
页数:23页
时间:2019-11-30
《2016届江苏省南京市高考数学三模试卷(解析版)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
2016年江苏省南京市高考数学三模试卷 一、填空题(共14小题,每小题3分,满分42分)1.已知集合M={0,2,4},N={x|x=,a∈M},则集合M∩N=______.2.已知0<a<2,复数z的实部为a,虚部为1,则|z|的取值范围是______.3.若直线l1:x+2y﹣4=0与l2:mx+(2﹣m)y﹣3=0平行,则实数m的值为______.4.某校有A,B两个学生食堂,若a,b,c三名学生各自随机选择其中的一个食堂用餐,则三人不在同一个食堂用餐的概率为______.5.如图是一个算法流程图,则输出的S的值是______.6.一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人作进一步调查,则在[2500,3000)(元)月收入段应抽出______人.7.已知l是直线,α、β是两个不同的平面,下列命题中的真命题是______.(填所有真命题的序号)①若l∥α,l∥β,则α∥β②若α⊥β,l∥α,则l⊥β③若l∥α,α∥β,则l∥β④若l⊥α,l∥β,则α⊥β8.如图,抛物线形拱桥的顶点距水面4m时,测得拱桥内水面宽为16m;当水面升高3m后,拱桥内水面的宽度为______m. 9.已知正数a,b,c满足3a﹣b+2c=0,则的最大值为______.10.在△ABC中,角A,B,C的对边分别为a,b,c,且a=,b=3,sinC=2sinA,则△ABC的面积为______.11.已知sn是等差数列{an}的前n项和,若s2≥4,s4≤16,则a5的最大值是______.12.将函数f(x)=sin(2x+θ)(﹣<θ)的图象向右平移φ(0<φ<π)个单位长度后得到函数g(x)的图象,若f(x),g(x)的图象都经过点P(0,),则φ的值为______.13.如图,在半径为1的扇形AOB中,∠AOB=60°,C为弧上的动点,AB与OC交于点P,则的最小值是______.14.用min{m,n}表示m,n中的最小值.已知函数f(x)=x3+ax+,g(x)=﹣lnx,设函数h(x)=min{f(x),g(x)}(x>0),若h(x)有3个零点,则实数a的取值范围是______. 二、解答题(共6小题,满分88分)15.在平面直角坐标系xOy中,点A(cosθ,sinθ),B(sinθ,0),其中θ∈R.(Ⅰ)当θ=,求向量的坐标;(Ⅱ)当θ∈[0,]时,求||的最大值.16.如图,在四棱锥E﹣ABCD中,底面ABCD是正方形,AC与BD交于点O,EC⊥底面ABCD,F为BE的中点.(1)求证:DE∥平面ACF;(2)若AB=CE,在线段EO上是否存在点G,使得CG⊥平面BDE?若存在,请证明你的结论;若不存在,请说明理由.17.如图,某水域的两直线型岸边l1,l2 成定角120°,在该水域中位于该角角平分线上且与顶点A相距1公里的D处有一固定桩.现某渔民准备经过该固定桩安装一直线型隔离网BC(B,C分别在l1和l2上),围出三角形ABC养殖区,且AB和AC都不超过5公里.设AB=x公里,AC=y公里.(1)将y表示成x的函数,并求其定义域;(2)该渔民至少可以围出多少平方公里的养殖区?18.已知点P是椭圆C上的任一点,P到直线l1:x=﹣2的距离为d1,到点F(﹣1,0)的距离为d2,且=.(1)求椭圆C的方程;(2)如图,直线l与椭圆C交于不同的两点A,B(A,B都在x轴上方),且∠OFA+∠OFB=180°.(i)当A为椭圆C与y轴正半轴的交点时,求直线l的方程;(ii)是否存在一个定点,无论∠OFA如何变化,直线l总过该定点?若存在,求出该定点的坐标;若不存在,请说明理由.19.已知函数g(x)=2alnx+x2﹣2x,a∈R.(1)若函数g(x)在定义域上为单调增函数,求a的取值范围;(2)设A,B是函数g(x)图象上的不同的两点,P(x0,y0)为线段AB的中点.(i)当a=0时,g(x)在点Q(x0,g(x0))处的切线与直线AB是否平行?说明理由;(ii)当a≠0时,是否存在这样的A,B,使得g(x)在点Q(x0,g(x0))处的切线与直线AB平行?说明理由.20.已知数列{an},{bn}满足bn=an+1﹣an,其中n=1,2,3,….(Ⅰ)若a1=1,bn=n,求数列{an}的通项公式;(Ⅱ)若bn+1bn﹣1=bn(n≥2),且b1=1,b2=2.(ⅰ)记cn=a6n﹣1(n≥1),求证:数列{cn}为等差数列;(ⅱ)若数列中任意一项的值均未在该数列中重复出现无数次.求a1应满足的条件. [选修4-1:几何证明选讲]21.如图,△ABC内接于圆O,D为弦BC上一点,过D作直线DP∥AC,交AB于点E,交圆O 在A点处的切线于点P.求证:△PAE∽△BDE. [选修4-2:矩阵与变换]22.变换T1是逆时针旋转角的旋转变换,对应的变换矩阵是M1;变换T2对应的变换矩阵是M2=.(1)点P(2,1)经过变换T1得到点P′,求P′的坐标;(2)求曲线y=x2先经过变换T1,再经过变换T2所得曲线的方程. [选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,以原点为极点,x轴的正半轴为极轴建立极坐标系.设点A,B分别在曲线C1:(θ为参数)和曲线C2:ρ=1上,求AB的最大值. [选修4-5:不等式选讲]24.已知:a≥2,x∈R.求证:|x﹣1+a|+|x﹣a|≥3.25.如图,在平面直角坐标系xOy中,抛物线y2=2px(p>0)的准线l与x轴交于点M,过M的直线与抛物线交于A,B两点.设A(x1,y1)到准线l的距离为d,且d=λp(λ>0).(1)若y1=d=1,求抛物线的标准方程;(2)若+λ=,求证:直线AB的斜率为定值.26.设f(n)=(a+b)n(n∈N*,n≥2),若f(n)的展开式中,存在某连续3项,其二项式系数依次成等差数列,则称f(n)具有性质P.(1)求证:f(7)具有性质P;(2)若存在n≤2016,使f(n)具有性质P,求n的最大值. 2016年江苏省南京市高考数学三模试卷参考答案与试题解析 一、填空题(共14小题,每小题3分,满分42分)1.已知集合M={0,2,4},N={x|x=,a∈M},则集合M∩N= {0,2} .【考点】交集及其运算.【分析】把M中元素代入x=确定出N,求出两集合的交集即可.【解答】解:把a=0,代入得:x=0;把a=2代入得:x=1;把a=4代入得:x=2,∴N={0,1,2},∵M={0,2,4},∴M∩N={0,2},故答案为:{0,2} 2.已知0<a<2,复数z的实部为a,虚部为1,则|z|的取值范围是 (1,) .【考点】复数的代数表示法及其几何意义.【分析】由复数z的实部为a,虚部为1,知|z|=,再由0<a<2,能求出|z|的取值范围.【解答】解:∵复数z的实部为a,虚部为1,∴|z|=,∵0<a<2,∴1<|z|=<.故答案为:(1,). 3.若直线l1:x+2y﹣4=0与l2:mx+(2﹣m)y﹣3=0平行,则实数m的值为 .【考点】直线的一般式方程与直线的平行关系.【分析】直线l1:x+2y﹣4=0与l2:mx+(2﹣m)y﹣3=0平行,直线l1的斜率存在,因此直线l2的斜率也存在.化为斜截式,利用直线相互平行的充要条件即可得出.【解答】解:∵直线l1:x+2y﹣4=0与l2:mx+(2﹣m)y﹣3=0平行,直线l1的斜率存在,∴直线l2的斜率也存在.∴两条直线的方程可以化为:y=﹣x+2;y=x+.∴,2≠.解得:m=. 故答案为:. 4.某校有A,B两个学生食堂,若a,b,c三名学生各自随机选择其中的一个食堂用餐,则三人不在同一个食堂用餐的概率为 .【考点】古典概型及其概率计算公式.【分析】先求出基本事件的总数,再找出所要求的事件包括的基本事件的个数,利用古典概型的概率计算公式即可得出【解答】解:甲学生随机选择其中的一个食堂用餐可有两种选法,同理乙,丙也各有两种选法,根据乘法原理可知:共有23=8中选法;其中他们在同一个食堂用餐的方法只有两种:一种是都到第一个食堂,另一种是都到第二个食堂,则他们不同在一个食堂用餐的选法有8﹣2=6;他们不同在一个食堂用餐的概率为=.故答案为: 5.如图是一个算法流程图,则输出的S的值是 20 .【考点】程序框图.【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:模拟执行程序,可得a=5,S=1满足条件a≥4,执行循环体,S=5,a=4满足条件a≥4,执行循环体,S=20,a=3不满足条件a≥4,退出循环,输出S的值为20.故答案为:20. 6.一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10000人中再用分层抽样方法抽出100人作进一步调查,则在[2500,3000)(元)月收入段应抽出 25 人.【考点】分层抽样方法.【分析】直方图中小矩形的面积表示频率,先计算出[2500,3000)内的频率,再计算所需抽取人数即可.【解答】解:由直方图可得[2500,3000)(元)月收入段共有10000×0.0005×500=2500人按分层抽样应抽出人故答案为:25 7.已知l是直线,α、β是两个不同的平面,下列命题中的真命题是 ④ .(填所有真命题的序号)①若l∥α,l∥β,则α∥β②若α⊥β,l∥α,则l⊥β③若l∥α,α∥β,则l∥β④若l⊥α,l∥β,则α⊥β【考点】空间中直线与平面之间的位置关系.【分析】利用线面平行、面面平行线面垂直的判定定理和性质定理对四个命题逐一分析解答.【解答】解:对于①若l∥α,l∥β,则α与β可能相交;故①错误;对于②若α⊥β,l∥α,则l与β可能平行;故②错误;对于③若l∥α,α∥β,则l可能在β内,故③错误;对于④若l⊥α,l∥β,由线面垂直和线面平行的性质定理,以及面面垂直的判定定理,可得α⊥β,故④正确;故选:④ 8.如图,抛物线形拱桥的顶点距水面4m时,测得拱桥内水面宽为16m;当水面升高3m后,拱桥内水面的宽度为 8 m.【考点】椭圆的应用.【分析】先根据题目条件建立直角坐标系,设出抛物线的方程,然后利用点在曲线上,确定方程,求得点的坐标,也就得到水面的宽.【解答】解:以抛物线的顶点为原点,对称轴为y轴建立直角坐标系设其方程为x2=2py(p≠0),∵A(8,﹣4)为抛物线上的点∴64=2p×(﹣4)∴2p=﹣16∴抛物线的方程为x2=﹣16y 设当水面上升3米时,点B的坐标为(a,﹣1)(a>0)∴a2=(﹣16)×(﹣1)∴a=4故水面宽为8米.故答案为:8. 9.已知正数a,b,c满足3a﹣b+2c=0,则的最大值为 .【考点】基本不等式.【分析】消去b,结合基本不等式的性质求出最大值,即可得答案.【解答】解:根据题意,设t=,由3a﹣b+2c=0可得3a+2c=b,则t===≤==;当且仅当a=c时“=”成立,则t≤,即的最大值为;故答案为:. 10.在△ABC中,角A,B,C的对边分别为a,b,c,且a=,b=3,sinC=2sinA,则△ABC的面积为 3 .【考点】正弦定理.【分析】由已知及正弦定理可求c的值,利用余弦定理即可求得cosB的值,利用同角三角函数基本关系式可求sinB的值,根据三角形面积公式即可计算得解.【解答】解:在△ABC中,∵sinC=2sinA,a=,b=3,∴由正弦定理可得:c=2a=2,∴由余弦定理可得:cosB===,可得:sinB==,∴S△ABC=acsinB==3.故答案为:3. 11.已知sn是等差数列{an}的前n项和,若s2≥4,s4≤16,则a5的最大值是 9 .【考点】等差数列的前n项和.【分析】由s2≥4,s4≤16,知2a1+d≥4,4a1+6d≤16,所以16≥4a1+6d=2(2a1+d)+4d≥8+4d,得到d≤2,由此能求出a5的最大值.【解答】解:∵s2≥4,s4≤16,∴a1+a2≥4,即2a1+d≥4 a1+a2+a3+a4≤16,即4a1+6d≤16所以16≥4a1+6d=2(2a1+d)+4d≥8+4d,得到d≤2,所以4(a1+4d)=4a1+6d+10d≤16+20,即a5≤9∴a5的最大值为9.故答案为:9. 12.将函数f(x)=sin(2x+θ)(﹣<θ)的图象向右平移φ(0<φ<π)个单位长度后得到函数g(x)的图象,若f(x),g(x)的图象都经过点P(0,),则φ的值为 .【考点】正弦函数的图象.【分析】由f(x)的图象经过点P(0,),且﹣<θ,可得θ=,又由g(x)的图象也经过点P(0,),可求出满足条件的φ的值【解答】解:将函数f(x)=sin(2x+θ)(﹣<θ)的图象向右平移φ(0<φ<π)个单位长度后,得到函数g(x)=sin[2(x﹣φ)+θ]=sin(2x﹣2φ+θ)的图象,若f(x),g(x)的图象都经过点P(0,),∴sinθ=,sin(﹣2φ+θ)=,∴θ=,sin(﹣2φ)=,∴﹣2φ=2kπ+,k∈Z,此时φ=kπ,k∈Z,不满足条件:0<φ<π;或﹣2φ=2kπ+,k∈Z,此时φ=﹣kπ﹣,k∈Z,故φ=,故答案为:. 13.如图,在半径为1的扇形AOB中,∠AOB=60°,C为弧上的动点,AB与OC交于点P,则的最小值是 .【考点】平面向量数量积的运算. 【分析】根据题意,可以得到△OAB为等边三角形,则AB=1,设BP=x,则AP=1﹣x,(0≤x≤1),利用向量加法的三角形法则,将则向已知向量转化,运用向量数量积的定义,即可得到关于x的二次函数,利用二次函数的性质,即可求得答案.【解答】解:∵OA=OB=1,∠AOB=60°,∴△OAB为等边三角形,则AB=1,设BP=x,则AP=1﹣x,(0≤x≤1),∴=(+)=+=||•||cos+||•||cos<,>=1+(1﹣x)•x•cosπ==(x﹣)2﹣,∵0≤x≤1,∴当x=时,取得最小值为﹣.故答案为:﹣. 14.用min{m,n}表示m,n中的最小值.已知函数f(x)=x3+ax+,g(x)=﹣lnx,设函数h(x)=min{f(x),g(x)}(x>0),若h(x)有3个零点,则实数a的取值范围是 (,) .【考点】函数零点的判定定理.【分析】由已知可得a<0,进而可得若h(x)有3个零点,则<1,f(1)>0,f()<0,解得答案.【解答】解:∵f(x)=x3+ax+,∴f′(x)=3x2+a,若a≥0,则f′(x)≥0恒成立,函数f(x)=x3+ax+至多有一个零点,此时h(x)不可能有3个零点,故a<0,令f′(x)=0,则x=±,∵g(1)=0,∴若h(x)有3个零点,则<1,f(1)>0,f()<0, 即,解得:a∈(,),故答案为:(,) 二、解答题(共6小题,满分88分)15.在平面直角坐标系xOy中,点A(cosθ,sinθ),B(sinθ,0),其中θ∈R.(Ⅰ)当θ=,求向量的坐标;(Ⅱ)当θ∈[0,]时,求||的最大值.【考点】平面向量数量积的坐标表示、模、夹角.【分析】(Ⅰ)把θ=代入,求出向量的坐标表示;(Ⅱ)由向量,求出||的表达式,在θ∈[0,]时,求出||的最大值.【解答】解:(Ⅰ)当θ=时,向量=(sin﹣cos,0﹣sin)=(+,﹣×)=(,﹣);(Ⅱ)∵向量=(sinθ﹣cosθ,﹣sinθ),∴||====;∴当θ∈[0,]时,2θ+∈[,],∴sin(2θ+)∈[﹣,1],∴sin(2θ+)∈[﹣1,],∴≤,即||的最大值是. 16.如图,在四棱锥E﹣ABCD中,底面ABCD是正方形,AC与BD交于点O,EC⊥底面ABCD,F为BE的中点.(1)求证:DE∥平面ACF;(2)若AB=CE,在线段EO上是否存在点G,使得CG⊥平面BDE?若存在,请证明你的结论;若不存在,请说明理由.【考点】直线与平面垂直的判定;直线与平面平行的判定.【分析】(1)利用正方形的性质以及中线性质任意得到OF∥DE,利用线面平行的判定定理可证;(2)取EO的中点G,连接CG,可证CG⊥EO,由EC⊥BD,AC⊥BD,可得平面ACE⊥平面BDE,从而利用面面垂直的性质即可证明CG⊥平面BDE.【解答】(本题满分为14分)证明:(1)连接OF由四边形ABCD是正方形可知,点O为BD的中点,又F为BE的中点,所以OF∥DE.…又OF⊂平面ACF,DE⊄平面ACF,所以DE∥平面ACF.…(2)在线段EO上存在点G,使CG⊥平面BDE,证明如下:取EO的中点G,连接CG,在四棱锥E﹣ABCD中,AB=CE,CO=AB=CE,所以CG⊥EO.…又由EC⊥底面ABCD,BD⊂底面ABCD,所以EC⊥BD.…由四边形ABCD是正方形可知,AC⊥BD,又AC∩EC=C,所以BD⊥平面ACE,而BD⊂平面BDE,…所以,平面ACE⊥平面BDE,且平面ACE∩平面BDE=EO,因为CG⊥EO,CG⊂平面ACE,所以CG⊥平面BDE.… 17.如图,某水域的两直线型岸边l1,l2成定角120°,在该水域中位于该角角平分线上且与顶点A相距1公里的D处有一固定桩.现某渔民准备经过该固定桩安装一直线型隔离网BC(B,C分别在l1和l2上),围出三角形ABC养殖区,且AB和AC都不超过5公里.设AB=x公里,AC=y公里.(1)将y表示成x的函数,并求其定义域;(2)该渔民至少可以围出多少平方公里的养殖区?【考点】基本不等式在最值问题中的应用.【分析】(1)由S△ABD+S△ACD=S△ABC,将y表示成x的函数,由0<y≤5,0<x≤5,求其定义域;(2)S=xysinA=sin120°=(≤x≤5),变形,利用基本不等式,即可得出结论.【解答】解:(1)由S△ABD+S△ACD=S△ABC,得,所以x+y=xy,所以y=又0<y≤5,0<x≤5,所以≤x≤5,所以定义域为{x|≤x≤5};(2)设△ABC的面积为S,则结合(1)得:S=xysinA=sin120°=(≤x≤5)=(x﹣1)++2≥4,当仅当x﹣1=,x=2时取等号.故当x=y=2时,面积S取最小值平方公里.答:该渔民总共至少可以围出平方公里的养殖区. 18.已知点P是椭圆C上的任一点,P到直线l1:x=﹣2的距离为d1,到点F(﹣1,0)的距离为d2,且=. (1)求椭圆C的方程;(2)如图,直线l与椭圆C交于不同的两点A,B(A,B都在x轴上方),且∠OFA+∠OFB=180°.(i)当A为椭圆C与y轴正半轴的交点时,求直线l的方程;(ii)是否存在一个定点,无论∠OFA如何变化,直线l总过该定点?若存在,求出该定点的坐标;若不存在,请说明理由.【考点】椭圆的简单性质.【分析】(1)设P(x,y),则d1=|x+2|,d2=,由此利用=,能求出椭圆C的方程.(2)(i)由(1)知A(0,1),又F(﹣1,0),从而kAF=1,kBF=﹣1,直线BF的方程为:y=﹣(x+1)=﹣x﹣1,代入=1,得3x2+4x=0,由此能求出直线AB的方程.(ii)kAF+kBF=0,设直线AB的方程为y=kx+b,代入=1,得,由此利用韦达定理、椭圆性质,结合已知条件能推导出直线AB总经过定点M(﹣2,0).【解答】解:(1)设P(x,y),∵点P是椭圆C上的任一点,P到直线l1:x=﹣2的距离为d1,到点F(﹣1,0)的距离为d2,且=,∴d1=|x+2|,d2=,==,化简,得=1.∴椭圆C的方程为=1.(2)(i)由(1)知A(0,1),又F(﹣1,0),∴kAF==1,∵∠OFA+∠OFB=180°,∴kBF=﹣1,∴直线BF的方程为:y=﹣(x+1)=﹣x﹣1,代入=1,得3x2+4x=0, 解得x1=0,,代入y=﹣x﹣1,得(舍),或,∴B(﹣,),kAB==,∴直线AB的方程为y=.(ii)∵∠OFA+∠OFB=180°,∴kAF+kBF=0,设直线AB的方程为y=kx+b,代入=1,得,设A(x1,y1),B(x2,y2),则,,∴kAF+kBF=+=+==0,∴(kx1+b)(x2+1)+(kx2+b)(x1+1)=2kx1x2+(k+b)(x1+x2)+2b=2k×﹣(k+b)×+2b=0,∴b﹣2k=0,∴直线AB的方程为y=k(x+2),∴直线AB总经过定点M(﹣2,0). 19.已知函数g(x)=2alnx+x2﹣2x,a∈R.(1)若函数g(x)在定义域上为单调增函数,求a的取值范围;(2)设A,B是函数g(x)图象上的不同的两点,P(x0,y0)为线段AB的中点.(i)当a=0时,g(x)在点Q(x0,g(x0))处的切线与直线AB是否平行?说明理由;(ii)当a≠0时,是否存在这样的A,B,使得g(x)在点Q(x0,g(x0))处的切线与直线AB平行?说明理由.【考点】利用导数研究曲线上某点切线方程;利用导数求闭区间上函数的最值.【分析】(1)求出g(x)的导数,由题意可得g′(x)≥0对x>0恒成立,即为a≥x﹣x2对x>0恒成立,求出右边函数的最大值,即可得到a的范围; (2)(i)a=0时,求出g(x)的导数,可得切线的斜率,由两点的斜率公式,化简整理,结合中点坐标公式,即可得到结论;(ii)当a≠0时,假设存在这样的A,B,使得g(x)在点Q(x0,g(x0))处的切线与直线AB平行.由两直线平行的条件:斜率相等,化简整理,结合中点坐标公式,化为ln=,设t=(0<t<1),记函数h(t)=lnt﹣,求出导数,判断单调性,即可得到结论.【解答】解:(1)函数g(x)的定义域为(0,+∞),g(x)的导数为g′(x)=+2x﹣2=,若函数g(x)在定义域上为单调增函数,可得g′(x)≥0对x>0恒成立,即为a≥x﹣x2对x>0恒成立,由h(x)=x﹣x2=﹣(x﹣)2+,当x=时,h(x)取得最大值,则a≥;(2)(i)a=0时,g(x)=x2﹣2x,g′(x)=2x﹣2,g′(x0)=2x0﹣2,设A(x1,g(x1)),B(x2,g(x2)),(0<x1<x2),可得x0=,kAB====x1+x2﹣2=2x0﹣2,则g(x)在点Q(x0,g(x0))处的切线与直线AB平行;(ii)当a≠0时,假设存在这样的A,B,使得g(x)在点Q(x0,g(x0))处的切线与直线AB平行.可得g′(x0)=,即+2x0﹣2=,由x0=,可得+x1+x2﹣2=+x1+x2﹣2, 即ln=,设t=(0<t<1),记函数h(t)=lnt﹣,则h′(t)=﹣=≥0,可得h(t)在(0,1)递增,可得当0<t<1时,h(t)<h(1)=0,即方程lnt=在区间(0,1)上无解,故不存在这样的A,B,使得g(x)在点Q(x0,g(x0))处的切线与直线AB平行. 20.已知数列{an},{bn}满足bn=an+1﹣an,其中n=1,2,3,….(Ⅰ)若a1=1,bn=n,求数列{an}的通项公式;(Ⅱ)若bn+1bn﹣1=bn(n≥2),且b1=1,b2=2.(ⅰ)记cn=a6n﹣1(n≥1),求证:数列{cn}为等差数列;(ⅱ)若数列中任意一项的值均未在该数列中重复出现无数次.求a1应满足的条件.【考点】数列递推式;等差关系的确定.【分析】(Ⅰ)根据数列的基本性质以及题中已知条件便可求出数列{an}的通项公式;(Ⅱ)(ⅰ)先根据题中已知条件推导出bn+6=bn,然后求出cn+1﹣cn为定值,便可证明数列{cn}为等差数列;(ⅱ)数列{a6n+i}均为以7为公差的等差数列,然后分别讨论当时和当时,数列是否满足题中条件,便可求出a1应满足的条件.【解答】解:(Ⅰ)当n≥2时,有an=a1+(a2﹣a1)+(a3﹣a2)+…+(an﹣an﹣1)=a1+b1+b2+…+bn﹣1=.又因为a1=1也满足上式,所以数列{an}的通项为.(Ⅱ)由题设知:bn>0,对任意的n∈N*有bn+2bn=bn+1,bn+1bn+3=bn+2得bn+3bn=1,于是又bn+3bn+6=1,故bn+6=bn∴b6n﹣5=b1=1,b6n﹣4=b2=2,b6n﹣3=b3=2,b6n﹣2=b4=1,(ⅰ)cn+1﹣cn=a6n+5﹣a6n﹣1=b6n﹣1+b6n+b6n+1+b6n+2+b6n+3+b6n+4=(n≥1), 所以数列{cn}为等差数列.(ⅱ)设dn=a6n+i(n≥0),(其中i为常数且i∈{1,2,3,4,5,6}),所以dn+1﹣dn=a6n+6+i﹣a6n+i=b6n+i+b6n+i+1+b6n+i+2+b6n+i+3+b6n+i+4+b6n+i+5=7(n≥0)所以数列{a6n+i}均为以7为公差的等差数列.设,(其中n=6k+i(k≥0),i为{1,2,3,4,5,6}中的一个常数),当时,对任意的n=6k+i有=;由,i∈{1,2,3,4,5,6}知;此时重复出现无数次.当时,=①若,则对任意的k∈N有fk+1<fk,所以数列为单调减数列;②若,则对任意的k∈N有fk+1>fk,所以数列为单调增数列;(i=1,2,3,4,5,6)均为单调数列,任意一个数在这6个数列中最多各出现一次,即数列中任意一项的值最多出现六次.综上所述:当时,数列中必有某数重复出现无数次.当a1∉B时,数列中任意一项的值均未在该数列中重复出现无数次. [选修4-1:几何证明选讲]21.如图,△ABC内接于圆O,D为弦BC上一点,过D作直线DP∥AC,交AB于点E,交圆O在A点处的切线于点P.求证:△PAE∽△BDE. 【考点】相似三角形的判定.【分析】由题意,根据相似三角形的判定方法,找出两组对应角分别相等,即可证明△PAE∽△BDE.【解答】证明:∵PA是圆O在点A处的切线,∴∠PAB=∠C.∵PD∥AC,∴∠EDB=∠C,∴∠PAE=∠PAB=∠C=∠BDE.又∵∠PEA=∠BED,∴△PAE∽△BDE. [选修4-2:矩阵与变换]22.变换T1是逆时针旋转角的旋转变换,对应的变换矩阵是M1;变换T2对应的变换矩阵是M2=.(1)点P(2,1)经过变换T1得到点P′,求P′的坐标;(2)求曲线y=x2先经过变换T1,再经过变换T2所得曲线的方程.【考点】几种特殊的矩阵变换.【分析】(1)变换T1对应的变换矩阵M1==,M1=,即可求得点P在T1作用下的点P′的坐标;(2)M=M2•M1=,由=,求得,代入y=x2,即可求得经过变换T2所得曲线的方程.【解答】解:(1)T1是逆时针旋转角的旋转变换,M1==,M1=,所以点P在T1作用下的点P′的坐标是(﹣1,2); (2)M=M2•M1=,设是变换后图象上任一点,与之对应的变换前的点是,则M=,=,也就是,即,所以所求的曲线方程为y﹣x=y2. [选修4-4:坐标系与参数方程]23.在平面直角坐标系xOy中,以原点为极点,x轴的正半轴为极轴建立极坐标系.设点A,B分别在曲线C1:(θ为参数)和曲线C2:ρ=1上,求AB的最大值.【考点】参数方程化成普通方程.【分析】把曲线C1的参数方程化为普通方程,把曲线C2的极坐标方程化为直角坐标方程,求出圆心距离,即可得出最大值.【解答】解:曲线C1:(θ为参数),消去参数θ化为曲线C1:(x﹣3)2+(y﹣4)2=4,曲线C1是以(3,4)为圆心,1为半径的圆;曲线C2:ρ=1,化为直角坐标方程:x2+y2=1,是以(0,0)为圆心,1为半径的圆,可求得两圆圆心距|C1C2|==5,∵AB≤5+2+1=8,∴AB的最大值为8. [选修4-5:不等式选讲]24.已知:a≥2,x∈R.求证:|x﹣1+a|+|x﹣a|≥3.【考点】绝对值不等式的解法.【分析】利用|m|+|n|≥|m﹣n|,将所证不等式转化为:|x﹣1+a|+|x﹣a|≥|2a﹣1|,再结合题意a≥2即可证得.【解答】证明:∵|m|+|n|≥|m﹣n|,∴|x﹣1+a|+|x﹣a|≥|x﹣1+a﹣(x﹣a)|=|2a﹣1|.又a≥2,故|2a﹣1|≥3.∴|x﹣1+a|+|x﹣a|≥3(证毕). 25.如图,在平面直角坐标系xOy中,抛物线y2=2px(p>0)的准线l与x轴交于点M,过M的直线与抛物线交于A,B两点.设A(x1,y1)到准线l的距离为d,且d=λp(λ>0).(1)若y1=d=1,求抛物线的标准方程;(2)若+λ=,求证:直线AB的斜率为定值. 【考点】抛物线的简单性质.【分析】(1)由题意可知x1=1﹣,A点坐标为(1﹣,1),将A点坐标代入抛物线方程求得p的值,写出抛物线的标准方程;(2)直线AB过M(﹣,0),设直线AB的方程为y=k(x+),代入抛物线方程y2=2px,消去y,整理得,解出x1、x2,将d=x1+,代入d=λp,得,+λ=,可知,,将x1、x2代入,即可解得,可证直线AB的斜率为定值.【解答】解:(1)由条件知,x1=1﹣,则A点坐标为(1﹣,1),代入抛物线方程得p=1,∴抛物线方程为y2=2x,(2)证明:设B(x2,y2),直线AB的方程为y=k(x+),将直线AB的方程代入y2=2px,消去y得:,解得:x1=,x2=.∵d=λp,∴,+λ=,,∴p=x2﹣x1=,∴,∴直线AB的斜率为定值. 26.设f(n)=(a+b)n(n∈N*,n≥2),若f(n)的展开式中,存在某连续3项,其二项式系数依次成等差数列,则称f(n)具有性质P.(1)求证:f(7)具有性质P;(2)若存在n≤2016,使f(n)具有性质P,求n的最大值.【考点】二项式定理的应用.【分析】(1)利用二项式定理计算可知f(7)的展开式中第二、三、四项的二项式系数分别为7、21、35,通过验证即得结论;(2)通过假设+=2,化简、变形可知(2k﹣n)2=n+2,问题转化为求当n≤2016时n取何值时n+2为完全平方数,进而计算可得结论.【解答】(1)证明:f(7)的展开式中第二、三、四项的二项式系数分别为=7、=21、=35,∵+=2,即、、成等差数列,∴f(7)具有性质P;(2)解:设f(n)具有性质P,则存在k∈N*,1≤k≤n﹣1,使、、成等差数列,所以+=2,整理得:4k2﹣4nk+(n2﹣n﹣2)=0,即(2k﹣n)2=n+2,所以n+2为完全平方数,又n≤2016,由于442<2016+2<452,所以n的最大值为442﹣2=1934,此时k=989或945. 2016年9月28日
此文档下载收益归作者所有
举报原因
联系方式
详细说明
内容无法转码请点击此处