欢迎来到天天文库
浏览记录
ID:46882780
大小:3.16 MB
页数:16页
时间:2019-11-28
《 贵州省凯里市第一中学2018届高三下学期第四套模拟考试数学(文)试题(解析版)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、凯里一中2018届《黄金卷》第四套模拟考试文科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合,则()A.B.C.D.【答案】B【解析】分析:求出集合,直接求即可.详解:故选B点睛:本题考查交集的运算,属基础题.2.如果复数的实部和虚部互为相反数,那么等于()A.-2B.C.D.2【答案】A【解析】分析:直接利用复数代数形式的乘除运算化简复数,利用实部和虚部互为相反数得答案.详解:∵复数由题复数的实部和虚部互为相反数,..故选A.点睛:本题考查
2、了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.3.下图是2017年1-11月汽油、柴油介个走势图(单位:元/吨),据此下列说法错误的是()A.从1月到11月,三种油里面柴油的价格波动最大B.从7月份开始,汽油、柴油的价格都在上涨,而且柴油价格涨速最快C.92#汽油与95#汽油价格成正相关D.2月份以后,汽油、柴油的价格同时上涨或同时下跌【答案】D【解析】分析:根据折线图,依次逐步判断即可.详解:由价格折线图,不难发现4月份到5月份汽油价格上涨,而柴油价格下跌,故选:D点睛:本题考查折线图的识别,解题关键理解折线图的含义,
3、属于基础题.4.下列四个命题中,正确的是()A.“若,则”的逆命题为证明题B.“”是“”的充要条件C.“”的否定是“”D.若为假命题,则均为假命题【答案】C【解析】分析:原命题的逆命题的真假判断,充要条件的判断,命题的否定,复合命题的真假判断.利用复合命题的真假判断①的正误;命题的否定判断②的正误;四种命题的逆否关系判断③的正误;函数的奇偶性的性质判断④的正误;详解:“若,则tanx=1”的逆命题为:“若tanx=1,则”显然是假命题,故A错误;当时,成立,但不成立,故B错误;命题:“∀x∈R,sinx≤1”的否定是“∃x0∈R,s
4、inx0>1”;满足命题的否定形式,C正确;若p∧q为假命题,则p,q中至少有一个假命题,一假即假,故D错误;故选:C点睛:本题考查命题的真假的判断与应用,涉及复合命题,四种命题的逆否关系,充要条件等,属于基础题.5.已知的内角的对边分别是,且,则角()A.30°B.45°C.60°D.90°【答案】C【解析】分析:由余弦定理,三角函数恒等变换的应用化简已知等式可得2cosCsinC=sinC,结合sinC≠0,可求cosC=,结合范围C∈(0,π),可求C=.详解:△ABC中,(a2+b2﹣c2)•(acosB+bcosA)=ab
5、c,由余弦定理可得:2abcosC(acosB+bcosA)=abc,∴2cosC(sinAcosB+sinBcosA)=sinC,∴2cosCsin(A+B)=sinC,2cosCsinC=sinC,∵sinC≠0,∴cosC=,又∵C∈(0,π),∴C=点睛:(1)在三角形中根据已知条件求未知的边或角时,要灵活选择正弦、余弦定理进行边角之间的转化,以达到求解的目的.(2)求角的大小时,在得到角的某一个三角函数值后,还要根据角的范围才能确定角的大小,这点容易被忽视,解题时要注意.6.若,且,则()A.B.C.D.【答案】A【解析】
6、分析:对条件两边平方可得,,利用三姊妹关系即可得到结果.详解:由题:,于是由于,.故选:A7.执行如图所示的程序框图,为使输出的值大于11,则输入的正整数的最小值为()A.4B.5C.6D.7【答案】C【解析】分析:由已知中的程序框图可知:该程序的功能是计算并输出S=1+0+1+2+…+(n-1)=的值,结合题意,即可得到结果.详解:该程序框图的功能是:当输入,输出,要使,至少是.故选:C点睛:本题主要考查程序框图的循环结构流程图,属于中档题.解决程序框图问题时一定注意以下几点:(1)不要混淆处理框和输入框;(2)注意区分程序框图是
7、条件分支结构还是循环结构;(3)注意区分当型循环结构和直到型循环结构;(4)处理循环结构的问题时一定要正确控制循环次数;(5)要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.8.某几何体的三视图如图所示,若图中的小正方形的边长为1,则该几何体外接球的表面积为()A.B.C.D.【答案】B【解析】分析:根据几何体的三视图,得出该几何体是正方体中的四棱锥,由此求出几何体的外接球的表面积.详解:根据三视图,可得该几何体的直观图如下:利用补形法,外接球半径,进而几何体
8、外接球的表面积为.点睛:(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P,A,B,C构成的三条线段PA,P
此文档下载收益归作者所有