欢迎来到天天文库
浏览记录
ID:46551139
大小:93.21 KB
页数:10页
时间:2019-11-25
《创新能力培养的层次化与教学策略初探》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、创新能力培养的层次化与教学策略初探邵武市教师进校学校张世应创新能力的大小主要由创新意识、创新思维能力、创新方法策略三者决定。如果把创新意识比作一颗良种,创新思维能力就是它赖以生存的土壤,而创新方法策略则是保证它健康生长的养料。我认为,对学生进行创新能力培养,应坚持层次化原则,遵循小学生的创新特点和创新思维的基本规律,针对层次间的内在联系和各自特点,采取相应的教学策略,促使学工的创新能力由稚嫩逐步走向成熟。否则就会延缓、贻误,甚至丧失培养的最佳时机。一、提倡自主探索,激发创新意识苏霍姆林斯基说过:“在人的心灵深处都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者、探索者。而在
2、儿童的精神世界屮,这种需要特别强烈”既然学生屮有这样的“资源优势”可利用,为什么不少教师还是抱怨:“如今的学生非常厌学,连书本上的知识都学不好,哪还谈得上创新?”家长也说:“我的孩子智商不低,干别的都行,就是学习不长进。”问题究竟出在哪呢?其实,罪恶的根源就在于'‘教师讲、学生听;教师问、学生答;教师出题、学生练”的封闭教学方式。在这样的课堂里,学生的任务是专心听讲,按老师的指令行事,无需自己考虑怎样学。不知不觉中,发现者的意念没了,研究者的身份没了,探索者的冲动没了。创新能力的培养是实施素质教育的核心,我们要用新的教育理念武装自己的头脑,寻求一种新的教学方式,激发学生的创新意识,
3、使创新植根于每一堂课,滋生于每一个学生心田,真正让学生主动发展、和谐发展、全面发展、可持续发展。口主探索学习方式,让每个学生围绕探索的问题,自己决定自己的探索方向,选择自己的方法,也就是说用自己的思维方式自由地、开放地去探索数学知识的产生和发展过程,最大限度地发挥学生的主观能动性,让学生想要成为“发现者、研究者、探索者”的愿望得到满足。如,教学《梯形面积》,我是这样安排探索程序的:1、习旧引探。复习与本节课密切相关的知识,为下一步的探索做好知识、智力、方法上的准备。(1)提问:三角形的面积公式是什么?是如何推导出来的?(2)激探。用多媒体课件演示,把三角形的一个顶点拉开变成梯形,使
4、学生认识到两种图形具有内有联系。师:刚才同学们看到,把三角形的一个顶点拉开就变成了梯形。怎样计算梯形的面积呢?如何推导梯形的面积公式?这个秘密就交给同学们去揭开。你可以用学具(课前已布置学生做完全一样的等腰梯形、直角梯形、非特殊梯形各两个)推导,也可以想别的办法,你爱怎么想就怎么想,爱怎么推导就怎么推导,方法不一样没关系,跟书上的不一样也没关系。2、实验探索。先个人自主探索,在此基础上四人一组交流、讨论,互相说一说自己的想法和推导过程,允许离开座位向别组展示探索成果。教师巡视。以一个参与者、合作者的身份深入到学生当中一起探索。3、归纳评价。(1)每组派一位代表汇报学习结果,出现两种
5、推导方法:a.用两个完全一样的等腰梯形或非特殊梯形拼成一个平行四边形。b.用两个完全一样的直角梯形拼成一个长方形(与教材不同给予表扬)o(2)对学生和蕴涵的数学思想方法进行归纳。在整个探索过程中,我没有给学生任何的暗示,而是用激励的语言让学生大胆去想、去实验、去探索。学生不但学到了知识,掌握了学法,形成了数学思想方法,还获得了良好的情绪体验,创新的意识越来越强,为进一步的学习提供了巨大的精神动力。二、注重求异、变通、提高创新思维能力西方有句格言“空袋不能直立。”如果一个人不具备丰富的知识和灵变的思维方式,创新对他来说简直就是天方夜谭。长期以来,小学数学教学以集中思维为卞要思维方式。
6、课本上的题目和材料的呈现过程大都循着一个模式,教师习惯于按照教材的思维方式进行教学,学生习惯于按照教师的方式去思考问题,这样就禁锢了学生创造性潜能的发挥。教师要以职业的敏锐性,挖掘教材中潜在的创新成分,捕获学生中闪现出的创新火花,不失时机地加以培养。求异和变通是创新思维最重要的方法,教师要有意识地提供一些素材,进行专门的训练,提高学生的思维品质,为向更高层次的创新能力发展提供智力上的保障。1、标新立异。固守陈规,人云亦云是创新的大敌。教师要鼓励学生不盲目迷信教师、教材、大胆提出与教师、教材不同的新方法、新见解。提倡不依常规,寻求变异,对给出的材料、信息从不同角度,向不同方向,用不同
7、方法或途径进行分析和解决。课堂上尽量说与别人不同的话,用与别人不同的方法,提与别人不同的问题。敢于质疑问难,善于反驳争辩,勇于标新立异。如在(梯形面积)教学时,尽管学生能通过自己的探索推导出梯形的面各计算公式,但我认为,这里有更深层次的创新可培养。课末我鼓励说:“今天我们用两个完全一样的梯形揭开了梯形面积这个密秘,同学们大胆试一试,能否用一个梯形来推导?可以讨论、查资料,也可请教家长或别人,我相信明天一定能看到更多、更新的办法。”果然不出所料,学生乂发现了五种方法。a
此文档下载收益归作者所有