高中数学第二讲直线与圆的位置关系四弦切角的性质互动课堂学案新人教A版选修4-1

高中数学第二讲直线与圆的位置关系四弦切角的性质互动课堂学案新人教A版选修4-1

ID:44500856

大小:167.60 KB

页数:4页

时间:2019-10-22

高中数学第二讲直线与圆的位置关系四弦切角的性质互动课堂学案新人教A版选修4-1_第1页
高中数学第二讲直线与圆的位置关系四弦切角的性质互动课堂学案新人教A版选修4-1_第2页
高中数学第二讲直线与圆的位置关系四弦切角的性质互动课堂学案新人教A版选修4-1_第3页
高中数学第二讲直线与圆的位置关系四弦切角的性质互动课堂学案新人教A版选修4-1_第4页
资源描述:

《高中数学第二讲直线与圆的位置关系四弦切角的性质互动课堂学案新人教A版选修4-1》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、四弦切角的性质互动课堂一、弦切角1.定义:顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角.2.弦切角的特点:(1)顶点在圆周上;(2)—边与圆相交;(3)—边与圆相切.3.弦切角定义中的三个条件缺一不可.图2-4-1各图中的角都不是弦切角.图⑴中,缺少“顶点在圆上”的条件;图(2)中,缺少“一边和圆相交”的条件;图(3)中,缺少“一边和圆相切”的条件;图(4)中,缺少“顶点在圆上”和“一边和圆相切”两个条件.⑴⑶⑷图2-4-14.如图2-4-2所示,弦切角可分为三类:(1)圆心在角的外部;(2)圆心在角的一边上;⑶圆心在角的内部.图2-4-2

2、二、弦切角定理1.弦切角定理:弦切角等于它所夹的弧对的圆周角.Q:I2.定理的证明:由于弦切角可分为三类,即图2-4-2所示的情况,所以在证明定理时分三种情况加以讨论:当眩切角一边通过圆心吋(图2-4-3(1)),显然眩切角与其所夹弧所对的圆周角都是直角;当圆心。在Z64〃外时(图2-4-3(2)),作的直径AQ,连结PQ,则Z必C=ABAQ-Z1=AAPQ-Z2=AAPC当圆心0在ZC1〃内时〔图2-4-3(3)1,作©0的直径AQ,连结/似则ZBAC=ZQAB+Z1=Z解+Z2=ZAPC.(2)⑶图2-4-33.在证明眩切角定理的过程中,我们从

3、特殊情况入手,通过猜想、分析、证明和归纳,从而证明了弦切角定理.通过弦切角定理的证明过程,要明确用运动变化的观点观察问题,进而理解从一般到特殊,从特殊到一般的认识规律.1.由弦切角定理,可以直接得出一个结论:若两弦切角所夹的弧相等,则这两个弦切角也相等,我们把这一结论称为弦切角定理的推论,它也是角的变换的依据.2.弦切角定理也可以表述为弦切角的度数等于它所夹的弧的度数的一半.这就建立了弦切角与弧的数量之间的关系,它为直接依据弧进行角的转换确立了基础.三、刨根问底问题到目前为止,对于圆中有关的角我们已学过圆心角、圆周角、弦切角,它们各自有定义、定理及和

4、它所对的弧的度数关系,这三种角在证明题和计算题中经常用到,它们相互之间有哪些联系和区别?探究:我们可用下表来分析它们的联系与区别.名称圆心角圆周角弦切角定义顶点在圆心的角顶点在圆上,两边和圆相交顶点在圆上,一边和圆相交,另一边和圆相切图形GCB有关定理①圆心角的度数等于它所对的弧的度数②在同圆或等圆中相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心距相等同弧所对的圆周角等于它所对的圆心角的一半眩切角等于它所夹弧所对的圆周角有关推论四者关系定理的推论圆周角定理的推论①②③眩切角定理的推论角与弧的关系ZA0B的度数二価的度数1亠ZACB的度数二丄八E

5、2的度数AACB的度数二丄血仁2的度数活学巧用【例1】如图2-4-4,AD是00的切线,化是00的弦,过C作初的垂线,垂足为B,CB与©0相交于点E,肋平分/CAB,且AE二2,求△肋T各边的长.思路解析:ZBAE为眩切角,于是再由处平分ZG〃和△初C是直角三角形可得ZC的度数,进而解直角三角形即可.解:•・・/〃为的切线,・・・Z场俟ZC.・.・必、平分乙CAB,:.ZBA&2ZBAE.又vzaz^=9o°,:.ZBAE'=ZC=30a.则有BE=1,昇〃=3,BC=3,AC=23.【例2]如图2-4-5,肋是厶ABC中ZE4C的平分线,经过点A的

6、与比切于点D,与AB、AC分别相交于氏E求证:肋'〃滋A图2-4-5思路解析:连结DF,构造弦切角,于是ZFDOZDAC,根据肋是厶ABC屮ZBAC的平分线有ZBAD^ZDAC,而Z胡〃与乙EFD对着同一段弧,所以相等,由此建立乙EFD与"DC的相等关系,根据内错角相等,可以断定两直线平行.证明:连结加•・•/!〃是Z/IC的平分线,:・ZBAD=ZDAC.・・•乙EFD=ZBAD,:.乙EFD二上DAC.、:00切BC于D,:•乙FDC二乙DAC.:.上EFD二乙FDC.:.EF//BC,【例3]如图2-4-6,内接于OQAB=ACt直线AT切00

7、于点C、弦BD〃XY,AC、加相交于点E.(1)求证:胆△昇(2)若AB二6cm,BC二4cm,求ME的长.图2-4-6思路解析:第(1)问中的全等已经具备了朋二AC,再利用弦切角定理与圆周角定理可以得角的相等关系;对于(2),则利用△BCEsHACB建立比例式,解方程获得胚的长.(1)证明:・・・府是的切线,AZ1=Z2.^BD/ZXY,AZ1=Z3.AZ2=Z3.・.・Z3=Z4,・・・Z2=Z4.・・•上ABD二ZACD,又IAB=ACf•••△4^△他.(2)解:・・・Z3=Z2,ZBCE=ZACB,:、BCEsACB..BCCE**AC

8、CB・・・AC・CE=BC,即AC*G4CW)=BC.•?AB=AC=6,BC=4,・・・6(6-初)二16

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。