高中数学 第二讲 直线与圆的位置关系 四 弦切角的性质创新应用教学案 新人教a版选修

高中数学 第二讲 直线与圆的位置关系 四 弦切角的性质创新应用教学案 新人教a版选修

ID:31481445

大小:484.00 KB

页数:8页

时间:2019-01-11

高中数学 第二讲 直线与圆的位置关系 四 弦切角的性质创新应用教学案 新人教a版选修_第1页
高中数学 第二讲 直线与圆的位置关系 四 弦切角的性质创新应用教学案 新人教a版选修_第2页
高中数学 第二讲 直线与圆的位置关系 四 弦切角的性质创新应用教学案 新人教a版选修_第3页
高中数学 第二讲 直线与圆的位置关系 四 弦切角的性质创新应用教学案 新人教a版选修_第4页
高中数学 第二讲 直线与圆的位置关系 四 弦切角的性质创新应用教学案 新人教a版选修_第5页
资源描述:

《高中数学 第二讲 直线与圆的位置关系 四 弦切角的性质创新应用教学案 新人教a版选修》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、我带领班子成员及全体职工,积极参加县委、政府和农牧局组织的政治理论学习,同时认真学习业务知识,全面提高了自身素质,增强职工工作积极性,杜绝了纪律松散四弦切角的性质[对应学生用书P28]弦切角定理(1)文字语言叙述:弦切角等于它所夹的弧所对的圆周角.(2)图形语言叙述:如图,AB与⊙O切于A点,则∠BAC=∠D.[说明] 弦切角的度数等于它所夹弧度数的一半,圆周角的度数等于它所对的弧的度数的一半,圆心角的度数等于它所对弧的度数.[对应学生用书P29]弦切角定理[例1] (2010·新课标全国卷)如图,已知圆上的弧=,过C点的圆的切线与BA的延

2、长线交于E点,证明:(1)∠ACE=∠BCD;(2)BC2=BE·CD.[思路点拨] 利用弦切角定理.[证明] (1)因为=,所以∠BCD=∠ABC.又因为EC与圆相切于点C,故∠ACE=∠ABC,所以∠ACE=∠BCD.(2)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC∽△ECB.故=,经过专家组及技术指导员的共同努力,科技入户工作取得了很大的成绩,促进了小麦产量的大幅提升,农民种粮收益明显提高,得到了广大群众的一致赞许和社会各界的广泛好评。我带领班子成员及全体职工,积极参加县委、政府和农牧局组织的政治理论学习,同时认真学习业

3、务知识,全面提高了自身素质,增强职工工作积极性,杜绝了纪律松散即BC2=BE·CD.利用弦切角定理进行计算、证明,要特别注意弦切角所夹弧所对的圆周角,有时与圆的直径所对的圆周角结合运用,同时要注意根据题目的需要可添加辅助线构成所需要的弦切角.1.如图,AB为⊙O的直径,直线EF切⊙O于C,若∠BAC=56°,则∠ECA=________.解析:连接BC,∵AB为⊙O的直径,∴∠ACB=90°.∴∠B=90°-∠BAC=90°-56°=34°.又∵EF与⊙O相切于点C,由弦切角定理,有∠ECA=∠B=34°.答案:34°2.如图,AB是⊙O的

4、弦,CD是经过⊙O上的点M的切线,求证:(1)如果AB∥CD,那么AM=MB;(2)如果AM=BM,那么AB∥CD.证明:(1)∵CD切⊙O于M点,∴∠DMB=∠A,∠CMA=∠B.∵AB∥CD,∴∠CMA=∠A.∴∠A=∠B,故AM=MB.(2)∵AM=BM,∴∠A=∠B.∵CD切⊙O于M点,∠CMA=∠B,∴∠CMA=∠A.∴AB∥CD.3.如图,已知AB是⊙O的直径,直线CD与⊙O相切于点C,AC平分∠DAB.(1)求证:AD⊥CD;(2)若AD=2,AC=,求AB的长.解:(1)证明:如图,连接BC.∵直线CD与⊙O相切于点C,∴∠

5、DCA=∠B.经过专家组及技术指导员的共同努力,科技入户工作取得了很大的成绩,促进了小麦产量的大幅提升,农民种粮收益明显提高,得到了广大群众的一致赞许和社会各界的广泛好评。我带领班子成员及全体职工,积极参加县委、政府和农牧局组织的政治理论学习,同时认真学习业务知识,全面提高了自身素质,增强职工工作积极性,杜绝了纪律松散∵AC平分∠DAB,∴∠DAC=∠CAB.∴∠ADC=∠ACB.∵AB为⊙O的直径,∴∠ACB=90°.∴∠ADC=90°,即AD⊥CD.(2)∵∠DCA=∠B,∠DAC=∠CAB,∴△ADC∽△ACB.∴=,∴AC2=AD·

6、AB.∵AD=2,AC=,∴AB=.运用弦切角定理证明比例式或乘积式[例2] 如图,PA,PB是⊙O的切线,点C在上,CD⊥AB,CE⊥PA,CF⊥PB,垂足分别为D,E,F.求证:CD2=CE·CF.[思路点拨] →→→[证明] 连接CA、CB.∵PA、PB是⊙O的切线,∴∠CAP=∠CBA,∠CBP=∠CAB.又CD⊥AB,CE⊥PA,CF⊥PB,∴Rt△CAE∽Rt△CBD,Rt△CBF∽Rt△CAD,∴=,=,∴=,即CD2=CE·CF.证明乘积式成立,往往与相似三角形有关,若存在切线,常要寻找弦切角,确定三角形相似的条件,有时需要

7、添加辅助线创造条件.经过专家组及技术指导员的共同努力,科技入户工作取得了很大的成绩,促进了小麦产量的大幅提升,农民种粮收益明显提高,得到了广大群众的一致赞许和社会各界的广泛好评。我带领班子成员及全体职工,积极参加县委、政府和农牧局组织的政治理论学习,同时认真学习业务知识,全面提高了自身素质,增强职工工作积极性,杜绝了纪律松散4.如图,已知MN是⊙O的切线,A为切点,MN平行于弦CD,弦AB交CD于E.求证:AC2=AE·AB.证明:连接BC.⇒△ACE∽△ABC⇒=⇒AC2=AB·AE.5.如图,AD是△ABC的角平分线,经过点A、D的⊙O

8、和BC切于D,且AB、AC与⊙O相交于点E、F,连接DF,EF.(1)求证:EF∥BC;(2)求证:DF2=AF·BE.证明:(1)∵⊙O切BC于D,∴∠CAD=∠CDF.∵AD

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。