《圆的对称性》教案 (2)

《圆的对称性》教案 (2)

ID:43016636

大小:197.00 KB

页数:5页

时间:2019-09-25

《圆的对称性》教案 (2)_第1页
《圆的对称性》教案 (2)_第2页
《圆的对称性》教案 (2)_第3页
《圆的对称性》教案 (2)_第4页
《圆的对称性》教案 (2)_第5页
资源描述:

《《圆的对称性》教案 (2)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、《圆的对称性》教案教学目标1.知识与技能(1)理解圆的轴对称性和中心对称性,会画出圆的对称轴,会找圆的对称中心;(2)掌握圆心角、弧和弦之间的关系,并会用它们之间的关系解题.2.过程与方法(1)通过对圆的对称性的理解,培养学生的观察、分析、发现问题和概括问题的能力,促进学生创造性思维水平的发展和提高;(2)通过对圆心角、弧和弦之间的关系的探究,掌握解题的方法和技巧.3.情感、态度与价值观经过观察、总结和应用等数学活动,感受数学活动充满了探索性与创造性,体验发现的乐趣.教学重难点重点:对圆心角、弧和弦之间的关系的理解.难点:能灵活运用圆

2、的对称性解决有关实际问题,会用圆心角、弧和弦之间的关系解题.教学过程一、创设情境,导入新课问:前面我们已探讨过轴对称图形,哪位同学能叙述一下轴对称图形的定义?(如果一个图形沿着某一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴).问:我们是用什么方法来研究轴对称图形?生:折叠.今天我们继续来探究圆的对称性.问题1:前面我们已经认识了圆,你还记得确定圆的两个元素吗?生:圆心和半径.问题2:你还记得学习圆中的哪些概念吗?忆一忆:1.圆:平面上到____________等于______的所有点组成的

3、图形叫做圆,其中______为圆心,定长为________.2.弧:圆上_____叫做圆弧,简称弧,圆的任意一条____的两个端点分圆成两条弧,每一条弧都叫做圆的半径.__________称为优弧,_____________称为劣弧.3.___________叫做等圆,_________叫做等弧.4.圆心角:顶点在_____的角叫做圆心角.二、探究交流,获取新知知识点一:圆的对称性1.圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?2.大家交流一下:你是用什么方法来解决这个问题的呢?动手操作:请同学们用自己准备好的圆

4、形纸张折叠:看折痕经不经过圆心?学生讨论得出结论:我们通过折叠的方法得到圆是轴对称图形,经过圆心的一条直线是圆的对称轴,圆的对称轴有无数条.知识点二:垂径定理按下面的步骤做一做:1.在一张纸上任意画一个⊙O,沿圆周将圆剪下,把这个圆对折,使圆的两半部分重合.2.得到一条折痕CD.3.在⊙O上任取一点A,过点A作CD折痕的垂线,得到新的折痕,其中,点M是两条折痕的交点,即垂足.4.将纸打开,新的折痕与圆交于另一点B,如上图.师:老师和大家一起动手.(教师叙述步骤,师生共同操作)师:通过第一步,我们可以得到什么?学生齐声:可以知道:圆是轴

5、对称图形,过圆心的直线是它的对称轴.师:很好.在上述的操作过程中,你发现了哪些相等的线段和相等的弧?生:我发现了,AM=BM,,.师:为什么呢?生:因为折痕AM与BM互相重合,A点与B点重合.师:还可以怎么说呢?能不能利用构造等腰三角形得出上面的等量关系?师生共析:如下图示,连接OA、OB得到等腰△OAB,即OA=OB.因CD⊥AB,故△OAM与△OBM都是Rt△,又OM为公共边,所以两个直角三角形全等,则AM=BM.又⊙O关于直径CD对称,所以A点和B点关于CD对称,当圆沿着直径CD对折时,点A与点B重合,与重合,与重合.因此AM=

6、BM,=,=.师:在上述操作过程中,你会得出什么结论?生:垂直于弦的直径平分这条弦,并且平分弦所对的弧.结论:垂径定理:垂直于弦的直径平分弦以及弦所对的两条弧.例1:如教材69页图3-4,以△OAB的顶点O为圆心的⊙O交AB于点C,D,且AC=BD.求证:OA=OB.例2:1400多年前,我国隋唐时期建造的赵州石拱桥的桥拱近似于圆弧形,它的跨度为37.02m,拱高(弧的中点到弦的距离,也叫弓形的高)为7.23m.求拱桥所在圆的半径(精确到0.1m).知识点三:圆的中心对称性.问:一个圆绕着它的圆心旋转任意一个角度,还能与原来的图形重合

7、吗?让学生得出结论:一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合,我们把圆的这个特性称之为圆的旋转不变性.圆是中心对称图形,对称中心为圆心.知识点四:同圆或等圆中圆心角、弧、弦之间的关系做一做:在等圆⊙O和⊙中,分别作相等的圆心角∠AOB和(如图3-8),将两圆重叠,并固定圆心,然后把其中的一个圆旋转一个角度,得OA与重合.你能发现哪些等量关系吗?说一说你的理由.小红认为,,她是这样想的:∵半径OA重合,,∴半径OB与重合,∵点A与点重合,点B与点重合,∴与重合,弦AB与弦重合,∴=,AB=.生:小红的想法正确吗?同学们交

8、流自己想法,然后得出结论,教师点拨.结论:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.问:在同圆或等圆中,如果两个圆心角所对的弧相等,那么它们所对的弦相等吗?这两个圆心角相等吗?你是怎么想的?学生之间交流,谈

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。