欢迎来到天天文库
浏览记录
ID:42888362
大小:475.50 KB
页数:7页
时间:2019-09-23
《第二十四章圆的小结与复习》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第24章圆小结与复习一、圆的概念集合形式的概念:1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条
2、平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。二、点与圆的位置关系1、点在圆内点在圆内;2、点在圆上点在圆上;3、点在圆外点在圆外;练习题:一个圆的直径为,到圆心的距离为,则该点在圆三、直线与圆的位置关系1、直线与圆相离无交点;2、直线与圆相切有一个交点;3、直线与圆相交有两个交点;-7-练习题:、一个点到圆的最短距离为,到圆的最长距离为,则这个圆的半径为四、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平
3、分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①是直径②③④弧弧⑤弧弧中任意2个条件推出其他3个结论。推论2:圆的两条平行弦所夹的弧相等。即:在⊙中,∵∥∴弧弧五、圆心角定理圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。此定理也称1推3定理,即上述四个结论中,只要知道其中的1个相等,则可以推出其它的3个结论,即:①;②;③;④弧弧练习题:如图,O为的
4、外心,若,则=六、圆周角定理-7-1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。即:∵和是弧所对的圆心角和圆周角∴2、圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧;即:在⊙中,∵、都是所对的圆周角∴推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。即:在⊙中,∵是直径或∵∴∴是直径推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。即:在△中,∵∴△是直角三角形或注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边
5、上的中线等于斜边的一半的逆定理。6、如图四边形ABOC,(O为圆心),若,则七、圆内接四边形圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。即:在⊙中,∵四边形是内接四边形∴-7-练习题5:边形ABCD内接于⊙O,若,则7、如图,,则八、切线的性质与判定定理(1)切线的判定定理:过半径外端且垂直于半径的直线是切线;两个条件:过半径外端且垂直半径,二者缺一不可即:∵且过半径外端∴是⊙的切线(2)性质定理:切线垂直于过切点的半径(如上图)推论1:过圆心垂直于切线的直线必过切点。推论2:过切点垂直于切线的直线必过圆心。以上
6、三个定理及推论也称二推一定理:即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。11、如图,⊙O的半径为6,弦,M是弦AB上的动点,最线段OM的最小值为,最大值为九、切线长定理切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。即:∵、是的两条切线∴平分-7-十、圆幂定理(1)相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。即:在⊙中,∵弦、相交于点,∴(2)推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。即:在⊙中,∵直径,∴(
7、3)切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。即:在⊙中,∵是切线,是割线∴(4)割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等(如上图)。即:在⊙中,∵、是割线∴(1)正三角形在⊙中△是正三角形,有关计算在中进行:;(2)正四边形同理,四边形的有关计算在中进行,:(3)正六边形同理,六边形的有关计算在中进行,.-7-十一、扇形、圆柱和圆锥的相关计算公式1、扇形:(1)弧长公式:;(2)扇形面积公式::圆心角:扇形多对应的圆的半径:扇形弧长:扇形面积2
8、、圆柱:(1)圆柱侧面展开图=(2)圆柱的体积:(2)圆锥侧面展开图(1)=(2)圆锥的体积:中考真题1(陕西).如图,在RT△ABC中∠ABC=90°,斜边AC的垂直平分线交BC与D点,交AC与E点,连接BE(1)若B
此文档下载收益归作者所有