全等三角形教案.doc

全等三角形教案.doc

ID:42845990

大小:343.00 KB

页数:21页

时间:2019-09-22

全等三角形教案.doc_第1页
全等三角形教案.doc_第2页
全等三角形教案.doc_第3页
全等三角形教案.doc_第4页
全等三角形教案.doc_第5页
资源描述:

《全等三角形教案.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、课题:12.1全等三角形【教学目标】知识与技能目标:掌握怎样的两个图形是全等形,了解全等形,了解全等三角形的的概念及表示方法。。掌握全等三角形的性质。体会图形的变换思想,逐步培养动态研究几何意识。初步会用全等三角形的性质进行一些简单的计算。过程与方法目标:围绕全等三角形的对应元素这一中心,。设计一系列问题,给出三组组合图形,让学生找出它的对应顶点、对应边、对应角,进面引入本节问题的主题,强化了本课的中心问题-----全等三角形的性质,经历理解性质的过程。,体会图形的变换思想,逐步培养学生动态研究几何图形的意识。情感与态度目标:学生在富有趣味的活动中进行

2、全等三角形的学习,提供学生发现规律的空间,激发学生学习兴趣。教学重点:全等三角形的性质教学难点:寻找全等三角形中的对应元素教学方法:采用启发诱导,实例探究,讲练结合,小组合作等方法。学情分析:这节课是学了三角形的基本知识后的一节课、只要实际操作不出错、学生一定能学好。课前准备:全等三角形纸片【教学教程】一、创设情境,引入新课1、问题:各组图形的形状与大小有什么特点?一般学生都能发现这两个图形是完全重合的。归纳:能够完全重合的两个图形叫做全等形。2.学生动手操作⑴在纸板上任意画一个三角形ABC,并剪下,然后说出三角形的三个角、三条边和每个角的对边、每个边

3、的对角。⑵问题:如何在另一张纸板再剪一个三角形DEF,使它与△ABC全等?3.板书课题:全等三角形定义:能够完全重合的两个三角形叫做全等三角形“全等”用“≌”表示,读着“全等于”如图中的两个三角形全等,记作:△ABC≌△DEF二、探究全等三角形中的对应元素1.问题:你手中的两个三角形是全等的,但是如果任意摆放能重合吗?该怎样做它们才能重合呢?2.学生讨论、交流、归纳得出:⑴.两个全等三角形任意摆放时,并不一定能完全重合,只有当把相同的角重合到一起(或相同的边重合到一起)时它们才能完全重合。这时我们把重合在一起的顶点、角、边分别称为对应顶点、对应角、对应

4、边。⑵.表示两个全等三角形时,通常把表示对应顶点字母写在对应的位置上,这样便于确定两个三角形的对应关系。全等三角形的性质1.观察与思考:寻找甲图中两三角形的对应元素,它们的对应边有什么关系?对应角呢?   全等三角形的性质:    全等三角形的对应边相等.  全等三角形的对应角相等.2.用几何语言表示全等三角形的性质如图:∵∆ABC≌∆DEF  ∴AB=DE,AC=DF,BC=EF(全等三角形对应边相等)   ∠A=∠D,∠B=∠E,∠C=∠F(全等三角形对应角相等)探求全等三角形对应元素的找法1.动画(几何画板)演示(1)图中的各对三角形是全等三角形

5、,怎样改变其中一个三角形的位置,使它能与另一个三角形完全重合?归纳:两个全等的三角形经过一定的转换可以重合.一般是平移、翻折、旋转的方法.(2)说出每个图中各对全等三角形的对应边、对应角归纳:从运动角度可以很轻松解决找对应元素的问题.可见图形转换的奇妙.2.动画(几何画板)演示图中的两个三角形通过怎样的变换才能重合?用式子表示全等关系.并说出其中的对应关系.CDE⑴⑵⑶3.归纳:找对应元素的常用方法有两种:  (1)从运动角度看    a.翻折法:一个三角形沿某条直线翻折与另一个三角形重合,从而发现对应元素.    b.旋转法:三角形绕某一点旋转一定角

6、度能与另一三角形重合,从而发现对应元素.    c.平移法:沿某一方向推移使两三角形重合来找对应元素.(2)根据位置元素来推理a.有公共边的,公共边是对应边;b.有公共角的,公共角是对应角;c.有对顶角的,对顶角是对应角;d.两个全等三角形最大的边是对应边,最小的边也是对应边;e.两个全等三角形最大的角是对应角,最小的角也是对应角;三、课堂练习练习1.△ABD≌△ACE,若∠B=25°,BD=6㎝,AD=4㎝,你能得出△ACE中哪些角的大小,哪些边的长度吗?为什么?练习2.△ABC≌△FED⑴写出图中相等的线段,相等的角;⑵图中线段除相等外,还有什么关

7、系吗?请与同伴交流并写出来.四、课堂小结通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,探索了找两个全等三角形对应元素的方法,并且利用性质解决简单的问题。找对应元素的常用方法有三种:(一)从运动角度看1.平移法:沿某一方向推移使两三角形重合来找对应元素.2.翻转法:找到中心线,沿中心线翻折后能相互重合,从而发现对应元素.3.旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素.(二)根据位置元素来推理1.全等三角形对应角所对的边是对应边;两个对应角所夹的边是对应边.2.全等三角形对应边所对的角是对应角;两条对应边所夹的角

8、是对应角.(三)根据经验来判断1.大边对应大边,大角对应大角2.公共边是对应边,公共角是对应角

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。